Comparison of ADMS and PRIME

Alan Robins, 21/6/00

1. Introduction

In 1992, the Electric Power Research Institute (EPRI) decided to embark upon a program (project PRIME: Plume Rise Model Enhancements) to design a new downwash model to correct the deficiencies in the ISC model. David Apsley's first BUILD report was published in 1988. European work has almost been totally ignored in the PRIME study. The concepts used in ADMS BUILD were first described at EUROMECH 163 in 1982 (Hunt and Robins, 1982), and in further detail in Robins (1983). PRIME developers (and EPRI) obviously knew of ADMS through formal and informal links. That no mention of ADMS BUILD can be found in the (refereed) JAWMA paper describing PRIME is very surprising.

The main features of the two models are summarise in Section 2, the data used to examine performance in Section 3, and related discussion in Section 4. References are listed in Section 5 and ADMS publications in Section 6.

2. Flow field regimes and modelling

Feature	PRIME	ADMS
Applicability	not statedpresumably as ISC3	• within defined building effects region
Building effects region	not statedpresumably as ISC3	 Xupwind, Zmax, ±Ymax defined no downstream limit
Building pre- processing	EPA BPIP pre-processor	• equivalent single rectangular block, plus orientation
Upwind	empirical velocity fieldundisturbed flow dispersion	 undisturbed flow and dispersion impact on front face plume splitting
Around building and near-wake	 empirical streamline slopes, Snyder & Lawson, 1993, fitted to near-wake boundary shape no effect of orientation stated dZsl/dx decays as z⁻¹ dYsl/dx – not stated linear spread if plume intercepts wake boundary 	 streamline slopes fitted to near-wake boundary shape slope a function of orientation slope decrease linearly with height dZsl/dx=0 at & above Zmax dYsl/dx=0 everywhere ambient spread laws
Near-wake	• elliptic in X-Z and X-Y	• elliptic in X-Z, parallel sided

boundary Near-wake	 roof reattachment criterion for Xsep, Wilson, 1979 Z_Rmax, Snyder & Lawson, 1993 L_R from Fackrell, 1984 modified Gaussian model 	 roof reattachment criterion for Xsep, based on data of Fackrell, 1984 Z_Rmax L_R from Fackrell, 1984
(internal source)	$ \begin{array}{ll} \text{for concentrations} \\ \bullet & d\sigma_{Y,Z}/dx{\approx}0.34,0.45 \\ \bullet & C(x,0,0){\approx}1/H_RW'_R \end{array} $	 box model for concentrations, C_R=constant in the near-wake T_R from Fackrell, 1984
Near-wake (external source)	 Q_R based on flux crossing boundary C_R calculated from modified Gaussian near-wake model 	 C_R from mean of concentrations over boundary (Puttock & Hunt, 1979) Q_R and fraction entrained from near-wake box model
Main wake (velocity field)	 empirical streamline slopes wake dimensions, Wilson 1979; Snyder & Lawson, 1993 turbulence field and velocity deficit from free-wake theory, Weil, 1996 dZsl/dx decays as x⁻¹, z⁻¹ dYsl/dx not stated 	 wake dimensions, velocity and turbulence fields from wallwake theory, Counihan et al, 1974 dYsl/dx, dZsl/dx from velocity field dZsl/dx=0, Z>Zmax dYsl/dx=0, Y >Ymax
Main wake (concentration field)	 two zone dispersion model, uses wake and external spreading rates, according to Yp, Zp? wake region eddy-diffusivity model for lateral and vertical spread elevated and ground based plume components 	 six zone dispersion model, uses wake and external spreading rates, according to Yp, Zp wake region eddy-diffusivity model for lateral and vertical spread elevated and ground based plume components
Near-wake, main- wake boundary Far field	 patched over a transition zone at X_R(1±0.15) virtual source model for concentrations once wake decayed, or X>15Hb 	 discontinuous model applied at all distances downwind
Plume lift-off from near-wake	• plume rise calculation with U≈Uh/3 in near-wake	 criteria related to buoyancy and momentum length scales plume rise calculation if criteria met
Plume trajectory	 integral model entrainment theory references Zhang & Ghoniem, 1993, (a model using Lagrangian vortex methods) 	 integral model based on development of Ooms, 1972 entrainment theory plume rise corrected for mean streamline displacements

3. Data used and reported for testing performance

Data source	Type	PRIME	ADMS
Barret, CF, Hall, DJ and Simmonds, AC,	Wind tunnel	n/a	all cases
1978. Dispersion from chimneys downwind	Neutral bl		
of cubical buildings - a wind tunnel study.	Passive plume		
Proc. NATO/CCMS 9th Int. Mtg. on Air	Maximum glc		
Pollution Modelling and its Applications,	_		
Toronto, Canada, August 28-31, 1978.			
Cowan, IR, 1996. A comparison of wind	Wind tunnel &	n/a	1 case
tunnel experiments and computational	CFD		
simulations of dispersion in the environs of	Neutral bl		
buildings. Proc. 4th Workshop on	Passive plume		
Harmonisation within Atmospheric	C(x,y,z)		
Dispersion Modelling for Regulatory	Short range		
Purposes, Ostend, Belgium, 6-9 May, 1996.			
Engineering Science, 1980. Field evaluation	Field	max glcs	n/a
of atmospheric dispersion models for natural	Buoyant plume	_	
gas compression studies. Report No. PR-133	glc, 63 hours		
for American Gas Association.	Short range		
Foster, PM & Robins, AG, 1985. The effects	Field & w/t	n/a	all cases
of buildings on low-level atmospheric	Near-neutral bl		
discharges, CEC Report, EU99980 EN,	Passive plume		
1985.	C(x,y,z)		
	Short range		
Guenther, A, Lamb, B and Allwine, E, 1989.	Field	all cases	n/a
Building wake dispersion at an arctic	Strong winds	(also used in	
industrial site: field tracer observations and	Gas turbine	model	
plume model evaluations. Atmos. Environ.,	glc, 10 expts	development)	
24A, 2329-2347.	20-3400m		
Hall, DJ, Kukadia, V, Walker, S &	Wind tunnel	n/a	all cases
Marsland, G.W., 1995, Plume dispersion	Neutral bl		
from chemical warehouse fires, BRE Client	Buoyant plume		
Report CR 56/95.	C(x,y,0)		
	Medium range		
Huber, AH & Snyder, WH, 1982. Wind	Wind tunnel	n/a	all cases
tunnel investigation of the effects of a	Neutral bl		
rectangular-shaped building on dispersion of	Passive plume		
effluents from short adjacent stacks, Atmos.	C(x,0,0)		
Environ, Vol. 16, p. 2837 – 2848.	Short range		
Koga, DJ and Way, JL, 1979. Effects of	Wind tunnel	n/a	qualitative
stack height and position on the dispersion	Neutral bl		comparisons
of pollutants in building wakes. Illinois Inst.	Passive plume		& sensitivity
of Technology, Fluids & Heat Transfer	C(x,y,0)		tests
Report R79-2.	Short range		
Macdonald, HF, Foster, PM, Robins, AG &	Field & w/t	n/a	all cases

TT D (C 1000 I 1 1 1	NT / 111		T
Thompson, IMG, 1988. Improved estimates	Near-neutral bl		
of external gamma dose rates in the environs	Buoyant plume		
of Hinkley Point Power Station, CEGB	C(x,y,z)		
Report, RD/B/6027/R88, 1988.	Medium range		
Melbourne, WH & Taylor, AJ, 1994. Wind	Wind tunnel	all cases	n/a
tunnel studies of plume dispersion from the	Neutral bl		
Lee Power Plant Power Station. EPRI	Buoyant plume		
Report TR 135274, Palo Alto, CA	C(x,y,z)		
,	Short range		
Robins, AG & Castro, IP, 1977. A wind	Wind tunnel	n/a	max glcs,
tunnel study of plume dispersion in the	Neutral bl		stack
vicinity of a surface mounted cube. Atmos.	Passive & with		emissions
Environ., Vol. 11, p 291 – 311.	momentum		CITISSIONS
Environ., vol. 11, p 271 311.	C(x,y,z)		
	Medium range		
Dahina AC Haydan D & Tagadala I 1000	Wind tunnel	n/a	analitativa
Robins, AG, Hayden, P & Teasdale, I, 1998.		11/a	qualitative
Dispersion from elevated sources above	Neutral bl		comparisons
obstacle arrays - modelling requirements.	Passive plume		and
Int. J. Environment and Pollution, in press.	C(x,y,z)		sensitivity
	Medium range		tests
Schulman, LL and Hanna, SR, 1986.	Field	10 highest	n/a
Evaluation of downwash modifications to	Whole year	glc	
the industrial source complex model. J. Air	Power plant		
Poll. Control Assoc., 36, 258-264.	4 sites within		
	1km		
Snyder, WH, 1992. Wind tunnel simulation	Wind tunnel	5 cases	n/a
of building downwash from electric power	Neutral bl	(also used in	
generating stations; Part I: Boundary layer	Buoyant plume	model	
and concentration measurements. USEPA,	C(x,y,0)	development)	
Res. Triangle Park.	Short range	1 /	
Start, GE, Hakari, NF, Sagendorf, JF, Cate,	Field	max glcs	n/a
JH & Dickson, CR, 1981. EOCR building	Passive plume	8 8	
wake effects on atmospheric diffusion.	gle, 22 hours		
NUREG/CR1395, NOOA, Idaho Falls, ID	C(x,y,0)		
Trottes, errisses, recent, radio rans, re	37-1600m		
Thomson, RS, 1993. Building amplification	Wind tunnel	1 case	n/a
factors for sources near buildings: a wind	Neutral bl	1 0030	11/ U
tunnel study. Atmos. Environ., 27A, 2313-	Passive plume		
2325.	C(x,0,0)		
	\		
Thompson DC & Lombardi DI 1077	Short range	n/o	all aggs
Thompson, RS & Lombardi, DJ, 1977.	Wind tunnel	n/a	all cases
Dispersion from roof-top emissions from	Neutral bl		
isolated buildings – a wind tunnel study, US	Passive plume		
EPA Report, EPA-600/4-77-006.	C(x,y,z)		
	Short range		

5. References:

5.1 For PRIME:

Paine, RJ & Lew, F, 1997. Results of the independent evaluation of ISCST3 and ISC-PRIME. EPRI Final Report TR-2460026, EPRI, Palo Alto, CA, November 1997

Paine, RJ & Lew, F, 1998. Project PRIME: evaluation of building downwash models using field and wind tunnel data. Paper No. 4B2, 10th Joint Conf. on the Applications of Air Pollution Meteorology, Phoenix, AZ, 1998

Schulman, L L, Stirmaitis, D G & Scire, J S, 2000. Development and evaluation of the PRIME plume rise and building downwash model. J. Air & Waste Management Assoc., 50, 378-390, March, 2000

Weil, JC, 1996. A new dispersion model for stack sources in building wakes. Proc. 9th Joint Conf. on Applications of Air Pollution Meteorology with AWMA, American Met. Soc., Boston, MA, 1996, 333-337.

5.2 For ADMS:

Counihan, J, Hunt, JCR & Jackson, PS, 1974. Wakes behind two-dimensional surface obstacles in turbulent boundary layers, J. Fluid Mech., Vol. 64, p. 529 – 563, 1974.

Fackrell, JE, 1984. Parameters characterising dispersion in the near-wakes of buildings, J. Wind Eng. and Industrial Aero., Vol. 16, p. 97 – 118, 1984.

Puttock, JS & Hunt, JCR,1979. Turbulent diffusion from sources near obstacles with separated wakes, Atmos. Environ., Vol. 13, p. 1 - 13, 1979.

Robins, AG, McHugh, CA & Carruthers, DJ, 1997. Testing and evaluating the ADMS building effects module. Int. J. Environment and Pollution, 8, 3-6, 708-717

Robins, AG and McHugh, C, 1999. Development and Evaluation of the ADMS Building Effects Module. Proc 6th International Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Rouen, France, 11-14 October, 1999

6. ADMS Publications

Robins A G, Hayden, P and Teasdale, I, 2000. Dispersion from elevated sources above obstacle arrays - modelling requirements. Int. J. Environment and Pollution, 1, 1-4, in press

Robins, A G and McHugh, C, 1999. Development and Evaluation of the ADMS Building Effects Module. Proc 6th International Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Rouen, France, 11-14 October, 1999

Robins A G, Hayden, P and Teasdale, I, 1998. Dispersion from elevated sources above obstacle arrays - modelling requirements. 5th International Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Rhodes, Greece, 18-21 May, 1998

CERC, 1998. Technical specification of ADMS 2.2 (18/2/98), CERC, Cambridge.

Robins, A G, McHugh, C A & Carruthers, D J, 1997. Testing and evaluating the ADMS building effects module. Int. J. Environment and Pollution, 8, 3-6, 708-717

Robins, A G, McHugh, C A & Carruthers, D J, 1996. Testing and evaluating the ADMS building effects module. Proc. 4th Workshop on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Oostende, 6-9 May, 1996.

CERC, 1995. Technical specification of ADMS 1.5 (3/7/95), CERC, Cambridge.

DJ Carruthers, RJ Holroyd, JCR Hunt, WS Weng, AG Robins, DD Apsley, DJ Thomson, FB Smith, 1994. UK-ADMS - a new approach to modelling dispersion in the earth's atmospheric boundary layer. J Wind Eng Ind Aerodyn, 52, 139-153

Carruthers, DJ, McHugh, CA, Robins, AG, Thomson, DJ, Davies, B, Montgomery, M, 1993. UK Atmospheric Dispersion Modelling System: Validation Studies Proc. NATO/CCMS 20th Int. Conf. on Air Pollution Modelling and its Applications, Valencia, Spain, 1993

Carruthers, DJ, Holroyd, RJ, Hunt, JCR, Weng, WS, Robins, AG, Apsley, DD, Thomson, DJ, Smith, FB, 1992. UK-ADMS - a new approach to modelling dispersion in the Earth's atmospheric boundary layer. Proc . Inaugural Conf. Wind Eng. Soc., Cambridge, 28-30 September, 1992

Carruthers, DJ, Holroyd, RJ, Hunt, JCR, Weng, WS, Apsley, DD, Smith, FB, Thomson, DJ, Hudson, B, 1991. UK atmospheric dispersion modelling system Proc. NATO/CCMS 19th Int. Conf. on Air Pollution Modelling and its Applications, Crete, Greece, 1991

Hunt, JCR, Holroyd, RJ, Carruthers, DJ, Apsley, DD, Smith, FB, Thomson, DJ, 1990. Developments in modelling air pollution for regulatory uses Proc. NATO/CCMS 18th Int. Conf. on Air Pollution Modelling and its Applications, Vancouver, Canada, 1990

Apsley, DD, 1990. Modelling of building effects in UK ADMS 1.0, ADMS Paper, P16/01A/90 (12/3/1990), CERC, Cambridge

Apsley, DD, 1988. A model for dispersion in the wake of large buildings. CEGC Report, RD/L/3359/R88, CEGB

Robins, AG, 1983. Recent advances in the modelling of dispersion near buildings. Proc. 'Heat and Fluid Flow in Nuclear and Process Plant Safety', I. Mech Engrs., 1983.

Hunt, JCR and Robins, AG, 1982. A model for assessing dispersion of plumes from sources in the vicinity of cuboid shaped buildings. Proceedings EUROMECH 162 (Ed: AR Janeiro Borges), 110-116, New University of Lisbon, 1982

Carruthers D.J., Mckeown A.M., Hall D.J. & Porter S. (1999), Validation of ADMS against wind tunnel data of dispersion from chemical warehouse fires, Atmos. Environ., Vol. 33, p. 1937 – 1954, 1999.

Counihan J., Hunt J.C.R. & Jackson P.S. (1974), Wakes behind two-dimensional surface obstacles in turbulent boundary layers, J. Fluid Mech., Vol. 64, p. 529 – 563, 1974.

Fackrell J.E. (1984), Parameters characterising dispersion in the near-wakes of buildings, J. Wind Eng. and Industrial Aero., Vol. 16, p. 97 – 118, 1984.

Puttock J.S. & Hunt J.C.R.. (1979), Turbulent diffusion from sources near obstacles with separated wakes, Atmos. Environ., Vol. 13, p. 1 – 13, 1979.

Robins A.G., Hayden P. & Teasdale I. (1998), Dispersion from elevated sources above obstacle arrays - modelling requirements. Int. J. Environment and Pollution, in press

Robins A.G., Speirs L.J. & Roberts P.E. (1999), The structure of wakes from three-dimensional porous obstacles in a deep, turbulent boundary layer. Wind Engineering into the 21st Century (Larsen, A, Larose, L and Livesey, F M, Eds), A A Balkema, Rotterdam, Vol. 3, p. 1717-1724, 1999.