Modelling road tunnels using ADMS-Urban: implementation and validation

Christina Hood

UK-US meeting on Air-Quality Modelling and Exposure Science 29th September 2016 Kings College London

Cambridge Environmental Research Consultants

Environmental Software and Services

Contents

- Background to road tunnel modelling
- Modelling concept
- Model implementation
 - Tunnel portals
 - Tunnel vents
 - Limitations
 - Sample run
- Validation
 - Bell Common (M25)
- Summary

Background to road tunnel modelling

- Road tunnels are used for:
 - Reducing traffic congestion
 - Crossing difficult terrain (mountains, rivers)
 - Moving air pollution and noise from traffic away from sensitive areas

UK-US meeting September 2016

Background to road tunnel modelling

- Air quality implications of road tunnels include:
 - Poor air quality within the tunnel
 - Poor air quality near tunnel portals
 - Good air quality above the tunnel
- Additional tunnel ventilation may reduce negative effects

Modelling concept

- Model the effects of the tunnel on the surrounding area, not the air quality within the tunnel
- Emission of pollution from the tunnel portal(s)
 - in the direction of traffic flow
 - following traffic along an outflow road
- Emission of pollution from tunnel vent(s) (optional)
 - divert emissions from portals
 - point or area vent sources

CFRC

Upstream wind Initial pollutant dispersion

Modelling concept

 Replace a tunnel road source with volume source(s) at outflow end(s), plus vent(s)

Model implementation - tunnel portals

- Based on Ginzburg and Schattanek (1997) approach
 - 3 volume sources per outflow end
 - Volume source lengths based on wind speed, traffic speed and portal geometry (range 30 – 250 m)
 - Reduced emission weighting moving away from the portal
- Volume source geometry follows outflow road
- Allow for portals and outflow roads below or above ground level
- Also applicable to rail tunnels, modelled as elevated roads

Model implementation - tunnel vents

- Same vent can extract from multiple tunnels
- One tunnel can emit via multiple vents
- Point or area source properties defined by source geometry and efflux parameters
- Specified fraction of emissions from road tunnel assigned to each vent
- Fraction of emissions extracted by vent can be altered with time-varying factors applied to vent

Model implementation - limitations

- No deposition or chemistry within tunnel
- No explicit treatment of recirculation between bores
- No allowance for removal of pollutants prior to venting eg. filtration

Adjust tunnel emissions if these effects are known to be significant

• Ambient temperature assumed for tunnel portal emissions

Tunnels: implementation - sample run

- Simple illustrative example
 - One "tunnel" road, no outflow road
 - One vent source near ground level
 - Identical met conditions, varying vent fraction

S ADMS Mapper				
<u>F</u> ile <u>E</u> dit <u>H</u> elp				
🖏 🎗 🜒 📡 🗞 🎗 🖏 🏷 🖉 🖉 🖉 🏈 💝 🧉	》 ҈♥Щ ■▼☆₩	l 🖶 19 (21) 🌌 🧏	9	
Legend 3D				Α
Point sources (1)				A
☐ Road sources (1)				_
	•			
 ✓ Volume sources (0) 				
+ Grid sources (0)				
Cutput grid extent				
ADDRETTIES Von				
		X: 1,070.3	Y: 566.08 Editing: None	Scale: 1:16,500

Tunnels: implementation - sample results

NOx concentration contours with varying vent fraction

Tunnels: validation

- Detailed measurement datasets for one Austrian and one UK road tunnel currently available for model testing/validation
- Focus on UK tunnel results: Bell Common (M25)
- Glasgow city centre modelling study complex urban site

Validation – Bell Common measurements

- Study by TRL for Highways Agency, report PPR449
- Measurements using passive samplers at 30 locations over 12 weeks in summer 2006
- Focus on NO₂ measurements from diffusion tubes

Validation – Bell Common model results

- Along-verge concentrations
- Averages over full measurement period (3 months)

Diffusion tubes
 Modelled no tunnels

Modelled tunnels

Validation – Bell Comon model results

- NO2 concentrations for all diffusion tube measurement sites
- 4 week averages

Validation – Bell Common model results

 Contours of modelled concentration and measurement points showing spatial matching

CERC

NO2 ug/m3

Measurements

- New module for automatic modelling of road tunnels in ADMS-Urban and ADMS-Roads 4
- Validation carried out for tunnels in UK and Austria
- Local urban modelling can involve complex multiple effects
- More details in ADMS-Urban User Guide (available online) and Technical Specification (available on request from CERC)

