Developments in ADMS-Airport and its Applications to Heathrow Airport

David Carruthers

Cambridge Environmental Research Consultants

IAE (Institute of Aviation and the Environment)
Cambridge, June 23 2008

Contents

- Key Factors affecting AQ at Airports
- Feature of ADMS-Airport
- Model Performance and sensitivities
- Heathrow Consultation Mixed Mode and R3

1) Key factors affecting air quality at airports

Key factors affecting air quality at airports

- Emissions
- Background concentrations
- Meteorology
- Near field dispersion processes
- Chemical reactions

2) Features of ADMS-Airport

Features of ADMS-Airport

- An extension of ADMS-Urban Gaussian type model nested in regional trajectory model
- Includes chemical reaction scheme, meteorological preprocessor, Monin-Obukhov and mixed layer scaling for boundary layer structure
- Allowance for up to 6500 sources: road (1500, each with up to 50 vertices), point, line area and volume (1500), grid sources (3000) and up to 500 runway sources (exhaust modelled as moving jets)
- Other airport features
 - Hour by hour time varying data
 - Multi-segment line sources e.g. taxi ways
 - GIS link displays line, volume and runway sources

Features: modelling exhausts as moving JETS & THE IMPACT OF WAKE VORTICES

- Models engine exhausts as moving jet sources
- As the aircraft accelerates
 - buoyancy and emissions increasingly spread along the runway
 - the exhaust jet sees a faster ambient wind speed, this affects the plume rise
- The plume from the faster aircraft rises less than that from a slower aircraft
- Allows for the impact wake vortices may have on jet plume rise

Neutral met conditions, plume trajectory (z_p) (top), vertical spread (σ_z) (middle) and z_p - σ_z (bottom)

Plume centreline height of the jet exhaust emitted at different points along the runway during take-

Difference between plume centreline height and vertical plume spread (Zp - sigma-z) of the jet exhaust emitted at different points along the runway during take-off The take-off roll starts at x = 0 with the aircraft moving in the negative x-direction

Vertical plume spread of the jet exhaust emitted at different points along the runway during take-off The take-off roll starts at x=0 with the aircraft moving in the negative x-direction

Local and Regional Scales

Main model nested within large, area-wide trajectory model

3) Model performance and sensitivities: MODEL SET UP

Heathrow: METEOROLOGICAL DATA

Heathrow: EMISSION SOURCES

- Gridded sources for all of London
- Roads local to Heathrow from LAEI (London Atmospheric Emissions Inventory) and the Heathrow Inventory
- LTO: taxi-in, taxi-out, landing, approach, initial climb, climb out
- Other: APU, airside vehicles, car parks, taxi ranks modelled as area or volume sources

2002 NOx emission rate

NOx (tonnes/year)
0 - 5
5 - 10
10 - 20

Heathrow: MONITORING DATA

Heathrow: BACKGROUND CONCENTRATIONS

NO_X NO₂ O₃

 PM_{10}

		2002
NO _x as NO ₂ (μg/m ³)	Annual average Maximum hourly average 99.79 th percentile	15 215 127
NO ₂ (μg/m ³)	Annual average Maximum hourly average 99.79 th percentile	12 84 62
O ₃ (μg/m³)	Annual average Maximum hourly average 99.79 th percentile	52 188 135
PM ₁₀ (μg/m³)	Annual average Maximum hourly average 90.41st percentile of 24 hour averages 98.08th percentile of 24 hour averages	19 124 33 48

3) Model performance and sensitivities: ANALYSIS OF RESULTS

NO_X (dark blue and red) and NO₂ (yellow and light blue) monitored and calculated annual mean concentrations at the automatic monitoring sites

LHR2 "Box and whisker" plots for the ratio of (calculated/monitored) concentrations, NO_X (top) and NO₂ (bottom).

2002 NO₂ box and whisker plot

The lines indicate the 75th, 50th and 25th percentiles and the lines extend from the 95th to 5th percentile.

Comparison of LHR2 monitored and calculated NO₂

Detailed <u>time series comparison</u> of monitored (blue) and calculated (red) hourly concentrations at receptor LHR2. 2I Jan 2002 — mid February 2002

LHR2 <u>diurnal variation</u> ADMS-Airport (solid line) compared with measured data (dotted line), <u>different runway use</u>

Departure on 27 R

No departure on 27 R

Arrival on 27R

Comparison of monitored and calculated NO₂ in μg/m³ at LHR2 as a function of wind speed for the hours when 27R is operational (blue an red) and the hours when it is not operational (cream and pale blue) separately.

Average monitored and calculated NO₂ concentration for each wind speed category

Measured v ADMS modelled

Measured v Model 2

Measured v Model 3

Polar plots of NO_x at LHR2 with background concentrations subtracted. Radius: wind speed in m/s.

Annual NOX due to aircraft and other airport sources (10km x 10km)

3) Mixed Mode and R3 Consultation

Scenarios for Mixed Mode and R3

- 2 runways operating in "Segregated Mode"
 - 2002 Base Case
 - 2010 SM
 - 2015 SM
- 2 runways operating in "Mixed Mode"
 - 2015 MM
- 3 runways; "Segregated Mode" on existing long runways & "Mixed Mode" on proposed short runway
 - 2020 R3
 - 2030 R3

Page 41, "Adding Capacity at Heathrow Airport: Consultation Document",

*Department for Transport, November 2007

Predicted NO₂ concentrations

Conclusions

Key factors affecting pollutant concentrations in the neighbourhood of airports include the following:

- Emissions including primary NO₂
- Background concentrations e.g. O₃
- Meteorology
- Near field dispersion processes, buoyancy of the aircraft exhausts
- Chemical reactions

Heathrow Mixed Mode and R3 – Consultation period over; DfT preparing response

