

Croucher Advanced Study Institute 2011-2012

Urban Climatology for Tropical & Sub-tropical Regions

Modelling Urban Air Quality using the Street Scale Resolution Atmospheric Dispersion Model ADMS-Urban

- David Carruthers
- · Technical Director
- · Cambridge Environmental Research Consultants

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Contents

- Introduction
- Examples of model performance
- Modelling methods
- ADMS-Urban features
- Application of ADMS- Urban in London and Beijing
- •Nesting of ADMS-Urban in a regional air quality model

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

London smog 1952

Chang An Avenue Beijing in 1979

Pollution sources in China

Industrial Sources 工业污染源 Inner Mongolia

Traffic in Modern Beijing 现代北京的交通

Same place, different days...

Impacts of Air Pollution

- · Serious health effects mainly respiratory:
 - -estimated 35,000 premature deaths in Europe per year due to particulate pollution;
 - -10% Beijing population have some respiratory problems;
 - -estimated (GAINS ASIA model) average of 40 months loss of life expectancy per person in China due to particulate pollution;
 - -cost to economies of lost work days and of health care;
- Impacts on natural environment affects plant growth, crop yield, water quality etc.
- · Visibility impairment

Examples of air quality model performance in urban areas

From DEFRA model inter-comparison exercise (D Carslaw) • NO_x Š 400 100 NO_x.meas site.type متحلل فأمرتي ASI 2: URBAN CLIMATE AND AIR POLLUTION

Modelling methods

Factors affecting air quality in urban areas

Modelling Methods

Box models - uniform concentration in each box

<u>Gaussian type models</u> - assumed concentration distributions

simple ISC (point sources)
CALINE (traffic)

advanced ADMS (4, Urban) AERMOD

> AirQUIS OML

<u>Puff Models</u> eg CALPUFF, SCIPUFF, RIMPUFF

ASI 2: URBAN CLIMATE AND AIR POLLUTION

School of Architecture. The Chinese University of Hong Kong Hong Kong 7-8 Dec 2011

Modelling Methods cont'd

Particle models - Stochastic or random walk models calculate trajectories of large number of particles as series of steps eg NAME (UK Met Office), AUSTAL (Germany)

Germany)

Complex numerical models

Steady state (CFD) computational fluid dynamics – eg eddy diffusivity models; Reynolds stress

Time dependent – Large Eddy Simulations, Chemical Transport Models eg MM5 or WRF and CMAQ

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architectur

School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

ADMS-Urban features

ADMS-Urban Model Capabilities I

- ADMS-Urban is designed to model dispersion scenarios of varying complexity, from a single isolated industrial site or road to multiple industrial, domestic and road traffic emissions over a large urban area
- Fully integrated street canyon model based on Danish OSPM model
- Local and regional NOX chemistry calculation (NO, NO₂ and O₃)

ADMS-Urban Model Capabilities II

- Based on current understanding of atmospheric boundary layer. A dispersion model in which the boundary layer structure is characterised by the height of the boundary layer and the Monin-Obukhov length
- A non-Gaussian vertical profile of concentration in convective conditions
- A meteorological pre-processor flexible input
- Models the effect of complex terrain (hills)
- Calculates emissions from traffic flows or accepts calculated emissions

ADMS-Urban Model Capabilities III

- Integration with Geographical Information Systems (GIS) and an Emissions Inventory Database (EMIT)
- Output via GIS includes high resolution pollutant concentration maps
- Can consider Air Quality Management and Mitigation Options e.g. Low Emission Zones, Technical Options, Traffic management.
- Used in many major cities, for example: London, Birmingham, Budapest, Rome, Beijing, Shanghai, Hong Kong

ASI 2: URBAN CLIMATE AND AIR POLLUTION

Modelling a plume from a point source I

ASI 2: URBAN CLIMATE AND AIR POLLUTION

Modelling a plume from a point source II

1 hourly concentration of NOx in µg/m³

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Road and other source types including roads

- Integrate point sources to model line sources
- Integrate line sources to model volume sources
- Add a crosswind exit velocity to model jet sources
- Include traffic-induced turbulence and the effect of street canyons to model road sources

Modelling flow over hills I – semi analytic approach 2 Regimes:

Moderately stable, neutral or convective meteorological conditions
 outer layer
 inportant

wind
 middle layer
 shear important

shear stresses
inner
layer

ASI 2: URBAN CLIMATE AND AIR POLLUTION
School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-6 Dec 2011

Modelling flow over hills II

2 Regimes:

Very stable meteorological conditions ("Froude Number < 1")

- GRS Chemistry Scheme
 - (1) $ROC + hv \rightarrow RP + ROC$
 - (2) $RP + NO \rightarrow NO_2$
 - $(3) NO_2 + hv \rightarrow NO + O_3$
 - $(4) \quad NO + O_3 \rightarrow NO_2$
 - (5) $RP + RP \rightarrow RP$
 - (6) $RP + NO_2 \rightarrow SGN$
 - (7) $RP + NO_2 \rightarrow SNGN$
 - (8) $2NO + O_3 \rightarrow 2NO_2$

Modelling NO_x and NO₂

 Venkatram A. et al "The Development and Application of a Simplified Ozone Modelling System", Atmospheric Environment, Vol 28, No. 22, pp 3665-3678, (1994)

where

ROC = Reactive Organic Compounds

RP = Radical Pool

SGN = Stable Gaseous Nitrogen products

SNGN = Stable Non-Gaseous Nitrogen products

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Modelling road traffic sources - Local effects

- Street canyons/ building effects
- Vehicle induced turbulence
- Initial mixing depth exhaust height and buoyancy
- Tunnels, embankments, cuttings, flyovers, noise barriers
- Different vehicle mixes in different lanes
- Queues
- Different speeds in different directions
- Road gradients
- Bus stops, Bus stations
- Car parks

ASI 2: URBAN CLIMATE AND AIR POLLUTION

Street canyons

Street canyons

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Street canyons

- Street canyon modules (eg OSPM used in ADMS)
- Currently:
 - 2-dimensional solution used within the canyon
- Possible improvements:
 - Model end effects (junctions)
 - Have some account taken of effect of street canyon externally (similar to noise barriers)
 - Model asymmetric canyons
 - Model multiple re-circulation regions for tall thin canyons

ASI 2: LIRRAN CLIMATE AND AIR POLITICION School of Architecture. The Chinese University of Hong Kong, 7:3 Dec 2011

Vehicle induced turbulence

Vehicle produced turbulence - Dispersion

Vehicle-induced turbulence Results ADMS-Urban: annual average concentrations

ASI 2: LIRBAN CLIMATE AND AIR POLLLITION School of Architecture. The Chinese University of Hu

Initial Mixing depth Effects of exhaust height and buoyancy

(a) Exhaust at rear of vehicle

Dispersing vehicle exhaust

(b) Exhaust above vehicle entrained into main wake

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture. The Chinese University of Hong Kong, 7-8 Dec 2011

▲ Lorry 45 deg

Initial Mixing - Exhaust Location Impacts

ASI 2: URBAN CLIMATE AND AIR POLLUTION

Initial mixing height in model

- Consider
 - Height of line source that represents the road
 - Initial vertical plume spread parameter

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture. The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Initial mixing height ADMS-Urban: annual average concentrations

Other features near roads

Tunnels

Tunnels

- User enters traffic flows and speeds within the tunnel
- Emissions modelled as volume sources at tunnel exits
- Account taken for venting of emissions from tunnel?

Flyovers etc

Flyovers

Effectively an elevated line source, shielded underneath

Cuttings

Modelling Issues Road source attributes

- NOT appropriate to model as complex terrain
- Similarities to street canyon module

Embankments

Modelling Issues Road source attributes

- NOT appropriate to model as complex terrain
- Effectively an elevated line source, shielded underneath

Noise barriers

Noise Barriers-modelled using ADMS-Urban/Roads (barrier 5m)

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, 7-8 Dec 2011

Application of ADMS-Urban in London and Beijing

Modelling emissions in large urban areas

ADMS-Urban - Local and Regional Scales

Main model nested with large, area-wide trajectory model

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture. The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

2010 Low emission Zone (LEZ) Reductions in PM_{10} at Receptor Points

Modelled NO₂ concentrations at London Heathrow Airport

Beijing's air quality: emission controls

Vehicles restricted to operating on alternate days according to whether the final number on their licence plate is odd or even

Green sticker for Euro I (III) or above for petrol (diesel) vehicles

- Control of energy and industrial production, construction and transport;
- •Final (Olympic) stage on 20 July 2008 reduction in the use of private cars further reduction in the use of government cars;
- •a temporary halt to construction during the Olympic period;
- •more cleaning of the roads to reduce dust
- •the suspension of heavily polluting industry;
- •a reduction in production for coal-based enterprises.

Signs alert drivers to areas of congestion and inform if the roads are free flowing

Higher polluting vehicles banned on urban roads from 1 July to 20 September no yellow stickers

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Beijing's air quality: emission controls

Without emission reduction measures (black line)

Beijing air quality forecasts

Number of blue sky days increasing; concentrations high by European standards

ASI 2: URBAN CLIMATE AND AIR POLLUTION So

School of Architecture, The Chinese University of Hong Kong, Hong Kong, 7-8 Dec 2011

Nesting ADMS-Urban within a regional model

Nesting ADMS-Urban in a regional model - Motivation

- · Why nest a local model within a regional model?
- What are the advantages of a nested model?

Model feature	Model	
	Regional (eg grid based)	Local (eg Gaussian plume)
Domain extent	Country (few 1000 km)	City (50km)
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows
Deposition and chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales
Source resolution	Low	High
Validity	Background receptors	Background, roadside and kerbside receptors

ASI 2: URBAN CLIMATE AND AIR POLLUTION

CMAQ/ADMS-Urban nesting system

 Aim: to nest local model in regional model without double counting emissions i.e.:

Concentration within nested domain

Regional = modelling of emissions Gridded locally modelled emissions (ΔT)

Explicit locally modelled emissions (ΔT)

 ΔT is the time taken to mix the explicitly defined emissions to produce a concentration field that varies spatially on the same scale as the regional model

ΔT varies with meteorology

ASI 2: URBAN CLIMATE AND AIR POLLUTION

School of Architecture The Chinese University of Hong Kong Hong Kong 7-8 Dec 2011

CMAQ/ADMS-Urban nesting system

Preliminary modelling Model results: receptors - NO₂

(Summer)

ASI 2: URBAN CLIMATE AND AIR POLLUTION

Preliminary modelling Model results: receptors - O₃

(All sites)

End, Thank You

David Carruthers
Cambridge Environmental Research
Consultants
3 Kings Parade, Cambridge, CB2 1SJ, United
Kingdom

Tel: +44 1223 357773

Email: david.carruthers@cerc.co.uk

Website: www.cerc.co.uk

ASI 2: URBAN CLIMATE AND AIR POLLUTION School of Architecture, The Chinese University of Hong Kong, 7-8 Dec 2011