Developments of ADMS-Urban for complex urban environments: application to London and Hong Kong

Presented by David Carruthers

Royal Met Soc Atmospheric Chemistry Meeting

Manchester

May 14 2015

Chang An Avenue, Beijing, in 1979 长安街

Contents

- Introduction to ADMS-Urban
- Urban Canopy and advanced street canyon model
- Nesting ADMS-Urban in regional models
- Conclusions

ADMS-Urban Model Capabilities

- ADMS-Urban is designed to model dispersion from a wide range of urban sources – first release 1996
- Gaussian type model with point, line area, road and grid sources; non-Gaussian vertical profile of concentration in convective conditions
- Concentration calculated at high resolution (<10m)
- Fully integrated street canyon model
- Includes meteorological pre-processor
- Options for different chemical mechanism; considers effects of complex terrain
- Integration with Geographical Information Systems (GIS) and an Emissions Inventory Database (EMIT)
- Used in many major cities for air quality management, forecasting etc: e.g. London, Manchester, Glasgow, Dublin, Budapest, Rome, Barcelona, Beijing, Hong Kong, Shanghai, Singapore, Cape Town etc.

Example use of ADMS-Urban

High Pollution Episodes

Background

- For near-road modelling, reactions over short temporal and spatial scales are of interest
- ADMS uses the Generic Reaction Set (Venkatram et al., 1994), which is a simplified semi-empirical photochemical model:

- Reactions 3. and 4. are specific and occur quickly
- All other reactions are generic
- More complex chemistry schemes can be included in ADMS

$$hv = Ultra-violet radiation$$

ROC = Reactive Organic Compounds

RP = Radical Pool

SGN = Stable Gaseous Nitrogen products

SNGN = Stable Non-Gaseous Nitrogen products

Generic Reaction Set (GRS) in ADMS

1.
$$ROC + hv \rightarrow RP + ROC$$

2.
$$RP + NO \rightarrow NO_2$$

3.
$$NO_2 + hv \rightarrow NO + O_3$$

$$1. \quad NO + O_3 \qquad \rightarrow \qquad NO_2$$

5.
$$RP + RP \rightarrow RP$$

6.
$$RP + NO_2 \rightarrow SGN$$

7.
$$RP + NO_2 \rightarrow SNGN$$

Practical implementation

- Dispersion and chemistry are modelled as an uncoupled system
- During dispersion, at each output point, the following are recorded:
- Total concentration from all N sources, $\sum_{i=1}^{N} C_i$, where Ci is the concentration from a particular source
- Sum of the product of concentration and pollutant age, Ai, $\sum_{i=1}^{N} C_i A_i$
- After dispersion, the average pollutant age can be approximated as

$$Age = \frac{\sum_{i=1}^{N} C_i A_i}{\sum_{i=1}^{N} C_i}$$

- Different average ages are calculated for 'near sources' and 'far sources' and the chemistry scheme applied for these average ages
- Rural background ozone is assumed to be fully entrained
- Background VOCs may be included

Generic Reaction Set (GRS) in ADMS

1.	ROC + hν	\rightarrow	RP + ROC
2.	RP + NO	\rightarrow	NO_2
3.	$NO_2 + hv$	\rightarrow	$NO + O_3$
4.	$NO + O_3$	\rightarrow	NO_2
5.	RP + RP	\rightarrow	RP
6.	$RP + NO_2$	\rightarrow	SGN
7.	$RP + NO_2$	\rightarrow	SNGN

Model results and validation

Look at how annual average NO₂ decays away from the road, relative to NO_x

	Road source	Annual average rural background
NO ₂	0.35 g/km/s	13.2 µg/m³
NO _x	2.36 g/km/s	16.8 µg/m³
NO ₂ /NO _x	0.15	0.79

 NO_2/NO_x increases from 0.28 in-road to 0.55 at 150 m

Distance from road centreline (m)

Model results and validation

- Look at how NO₂ decays away from the road, relative to NO_x
- How does the model compare to measurements?

	Site A	Site B	Site C
Monitor distance from road (m)	1.5	3.0	1.0
Monitor height	2.5	4.0	2.0
Total AADT	70,000	10,625	43,500

Limitations of ADMS-Urban

- Street canyon model (OSPM) is idealized limited variation of concentration with height
- Idealized mean flow and turbulence model
- Does not consider regional scale impacts on urban air quality (except through background monitoring data)
- Simplified chemical reaction scheme only applicable in near field

Background: Urban Canopy Flow

- Urban architecture affects local air flow
- Important to use urban flow characteristics for accurate calculation of pollutant dispersion
- Earliest historic studies (CFD, wind tunnel and field experiments)
 used regular arrays of cubic obstacles to represent urban buildings
- Some later extensions to real urban areas with irregular arrays and non-cubic buildings
- Parameterisation based on published experimental and wind tunnel data, CFD and theoretical considerations

Background: Canyon Flow and dispersion

- Many modern urban areas feature closely-packed tall buildings which form street canyons
- Existing dispersion models for street canyons, eg.
 OSPM, were developed based on 'European' urban geometries
 - Canyon heights and widths of similar magnitude
 - Symmetric properties on each side of a canyon
- Choice required between canyon and non-canyon modelling
- Improved modelling of street canyons should include:
 - Tall canyons (height/width > 1)
 - Asymmetric canyons: height, width, building density
 - Smoother transition between non-canyon and canyon modelling

Urban Canopy Flow Implementation in ADMS-Urban: Wind speed

Three-part velocity profile: above 2x displacement height, below displacement height and transition region.

Implementation in ADMS-Urban: Turbulence

Two part profile: above and below displacement height

Urban Canopy Flow: Characterisation of urban area

 Effective roughness z_{0b} and displacement height d calculated relative to average building height H using plan and frontal area fractions λ_{P} and λ_{F}

•
$$\lambda_{P} = A_{P}/A_{T}$$

$$\lambda_{\mathsf{F}} = A_{\mathsf{F}}/A_{\mathsf{T}}$$

•
$$\lambda_{\rm F} = A_{\rm F}/A_{\rm T}$$
 • d/H = 1 + $(\lambda_{\rm P} - 1)\alpha^{-\lambda P}$

•
$$z_{0b}/H = (1-d/H)exp\{-(0.5\beta C_D \lambda_F (1-d/H)/\kappa^2)^{-0.5}\}$$

Macdonald et al. 1998 Atmos. Environ. 32:1857-1864

Canyon Flow and Dispersion Theory: Canyon effects

5 principal effects of street canyons on dispersion

- 1. Pollutants are channelled **along** street canyons
- 2. Pollutants are dispersed **across** street canyons by circulating flow at road height
- 3. Pollutants are trapped in **recirculation** regions
- Pollutants leave the canyon through gaps between buildings as if there was no canyon
- 5. Pollutants leave the canyon from the canyon top

Canyon Flow and Dispersion Theory: Component sources

Each effect is modelled using a component source, with differing

- Source geometry
- Source dispersion type
- Wind direction
- Region of influence
- Source strength

The final concentration is the weighted sum of contributions from the component sources with weights depending on canyon geometry, porosity and wind direction

Canyon Flow and Dispersion ADMS-Urban Implementation: Canyon flow

- Upstream wind is split into components parallel and perpendicular to the canyon axis
- Perpendicular component takes account of recirculation $\hat{h}(z)$ and is further reduced by obstacles (user-defined factor η)

$$U_x(z) = U(z) \cos \Delta \varphi$$

$$U_{\mathbf{v}}(z) = U(z) \, \eta \, \hat{\mathbf{h}}(z) \sin \Delta \boldsymbol{\varphi}$$

Canyon cross-section contours

Canyon with properties set to those for KC5 monitoring site –
 Earls Court Road

Upstream wind

- Slight asymmetries in height, width and porosity
- Concentrations for one example hour

ADMS-Urban model set-up for London Input data

- Standard ADMS-Urban modelling approach for London
 - Measured meteorological data from Heathrow airport
 - Measured upwind rural background concentrations
 - London Atmospheric Emissions Inventory (LAEI) emissions data
 - Modelling year 2012
 - Modelling domain 10x15 km central London
- Model configurations tested
 - No canyon: no street canyon modelling
 - Basic canyon: existing ADMS-Urban street canyon model
 - Advanced canyon & Urban Canopy: Urban Canopy flow field with new street canyon modelling

ADMS-Urban model set-up for London Monitoring network

- 29 monitors located within the 'buildings data' area
- Monitor information (values, locations, heights) available from web
- Data for NO_x, NO₂, PM₁₀, PM_{2.5}, O₃
- 21 kerbside/roadside, 8 urban background
 - Some of the urban background sites are within canyons
- Monitor heights generally less than or equal to 3 m

Validation Results Mean NO₂ concentrations scatter plot

- All sites shown
- When canyons are modelled, means usually increase, giving a better estimate
- Modelling canyons does not affect the lower concentration sites

Validation Results NO₂ concentration statistics

- Data for all sites for whole year
- Best statistics highlighted

Data	Mean	NMSE	R	Fac2	Fb
Observed	70.8	0.00	1.00	1.00	0.00
No Canyon	54.8	0.73	0.38	0.74	-0.26
Basic Canyon	65.0	0.40	0.61	0.82	-0.09
Advanced Canyon & Urban Canopy	67.9	0.32	0.70	0.83	-0.04

Validation Results Polar plots: Full canyon

Consider a receptor 'CD9' within a standard canyon (H/g = 0.96, porosity = 0.26)

- Wind from North West gives low concentrations and from the South East gives high concentrations due to presence of canyon
- 'No canyon' and 'Basic canyon' runs predict similar concentrations in all directions

CERC

NO₂ concentrations

Nesting local model (e.g. ADMS-Urban) in regional model (e.g. CMAQ, CAMx)

Advantages of a nested model system

Model feature	Model			
	Regional (eg grid based)	Local (eg Gaussian plume)		
Domain extent	Country (few 1000 km)	City (50km)		
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous		
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows		
Chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales		
Source resolution	Low	High		
Validity	Background receptors	Background, roadside and kerbside receptors		

Nesting system concept

 Aim: to nest local model in regional model without double counting emissions i.e.:

ΔT is the time taken to mix the explicitly defined emissions to produce a concentration field that varies spatially on the same scale as the regional model

ΔT varies with meteorology

Nesting system components

Domain: Hong Kong Special Administrative Region (HK SAR)

Period: 2010

Regional models: WRF (v 3.2) and CAMx (v 5.4)

Input data:

- 1 km regional model data (Yao et al., 2014)
- Gridded emissions data as used in CAMx
- For major roads, traffic flow, speed and location data
- Point source information

Emission sources & output locations

- Results: validation at monitors
 - ADMS-Urban (uses measured background concentrations & meteorology)
 - ADMS-Urban RML
 - CAMx

Results: validation at monitors

ADMS-Urban RML

CAMx

NO₂ statistics

Site type	Sites	Model	Observed (µg/m³)	Modelled (µg/m³)	R	Fac2
		ADMS-Urban	116.6	104.4	0.66	0.88
Roadside	3	ADMS-Urban RML	117.2	115.2	0.63	0.95
		CAMx	117.2	58.5	0.49	0.45
Background	10	ADMS-Urban	54.7	41.3	0.57	0.70
		ADMS-Urban RML	55.6	47.0	0.57	0.72
		CAMx	55.6	44.1	0.54	0.68
Rural	1	ADMS-Urban	12.5	18.4	0.52	0.87
		RML (nested)	12.7	9.0	0.30	0.52
		CAMx	12.7	9.0	0.30	0.52

Results:

- Contour plot for PM_{2.5}
- Exceedences of the annual average air quality objective, 35 μg/m³

Conclusions

- New practical parameterisations for modelling urban canopy flow field and complex street canyon effects have been developed
- System for integrating local (urban) and regional models (CMAQ, CAMx,EMEP4UK) has been developed.
- Further system development taking place as part of NERC Cure-Air project (Universities and Edinburgh and Leeds, and CEH)

Acknowledgements

The urban canopy and advanced street canyon modules have been developed in collaboration the Hong Kong University of Science and Technology, supported by the Hong Kong Environmental Protection Department.

