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Summary 

This paper describes the specification of the fluctuations module.

1. Introduction

Fluctuations in concentrations are important in many dispersion problems involving the
release of toxic, inflammable or odourous substances. Knowledge of fluctuations is also useful
for assessing uncertainties in dispersion models. By using a combination of theory and
experimental data it is possible to put together a scheme which should give some useful guidance
on the magnitude of fluctuations. However it should be noted that estimates of concentration
fluctuations are, given our present understanding, likely to suffer from somewhat larger errors than
estimates of mean concentrations; indeed it is hard to estimate how big the errors in the present
scheme might be in situations which lie well outside those for which the scheme has been tested
(see P13/02). The scheme is restricted to cases where there is an appreciable mean wind with

U » σu.

2. Output from the fluctuations module

The inclusion of fluctuations in a dispersion model necessitates quite a precise description
of what we are actually calculating. In particular the questions `what sort of mean is the mean
concentration?' and `what is the output of the fluctuations module intended to represent?' need
addressing. In general the results from ADMS are computed with the assumption that the
meteorology is approximately constant in time. Averages are then defined to be ensemble
averages, where `ensemble average' means an average over a large number of occasions in which
the meteorology is the same (and approximately constant) but in which the details of the boundary
layer turbulence differ. We adopt the pragmatic assumption that most of the changes on a period
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of less than 1 hour are due to the boundary layer turbulence while changes on a longer time-scale
are due to changing meteorology. This is consistent with the way met data is treated in the met
input module (see P05/01). If either the observation period or release period is less than about an
hour, the assumption of approximately constant meteorology is generally not too bad and the
above concepts are appropriate. If however these periods are both much greater than an hour, the
results apply only to those occasions when the meteorology remains roughly constant for some
time. ADMS offers two options to overcome this problem, one involving the mean concentration
module and one involving the output module. If these options are used the fluctuations module
should not be used - the fluctuations module deals only with fluctuations due to the turbulence.

If information on fluctuations is required, the fluctuations module will be run once for
each hour that ADMS is considering. The output provided for each hour depends of the type of
calculation being carried out - this could fall into one of three possible types.

2.1 The first type of calculation is concerned with continuous releases. Of course no releases
actually continue indefinitely, but the continuous release results will also be appropriate to the
`plateau' part of a finite duration release. For this case the mean concentration module calculates

the ensemble average concentration - this is a function of (x,y,z). The fluctuations module will

estimate the probability (over the ensemble under consideration) with which the 'concentration

averaged over period tav' exceeds any particular value ĉ  - this is a function of (x,y,z,ĉ ) - and will
also output the variance of this probability distribution. In addition the ensemble average of the

pdoseth power of the `concentration averaged over period tav' will be calculated if required. This

quantity is often used in calculating the effect of exposure to fluctuating concentrations of toxic
substances (Griffiths 1990).
 

Although the averages and probability distributions are defined relative to a hypothetical
ensemble they should be close to time averages and frequency distributions over periods of about
an hour. This is because an hour should be long enough to give a representative sample of

boundary layer turbulence. If tav is much greater than 1 hour, the met conditions would in general
change over the averaging period and so the results obtained (which assume constant
meteorology) would not generally be relevant to what happens in reality. 

2.2 The second type of calculation is concerned with situations where predictions of
time-integrated quantities from finite duration releases are required. For this case the mean
concentration module calculates the ensemble average of the time-integrated concentration - this

is a function of (x,y,z). The fluctuations module will estimate the probability (over the ensemble

under consideration) with which the time-integrated concentration exceeds any particular value
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ĉ  - this is a function of (x,y,z,ĉ ) - and will also output the variance of this probability distribution.

In addition the ensemble average of the pdoseth power of the time-integrated concentration will be
calculated if required. This latter quantity is not usually of interest, but, in order to simplify the
program structure, it is convenient to allow the possibility of calculating it anyway.
 

If tR is much greater than 1 hour, the met conditions would in general change over the

release period and so the results obtained (which assume constant meteorology) would not
generally be relevant to what happens in reality.

2.3 The third type consists of situations where predictions of instantaneous quantities from
finite duration releases are required. For this case the mean concentration module calculates the

ensemble average of the instantaneous concentration - this is a function of (x,y,z,t). The
fluctuations module will estimate the probability (over the ensemble under consideration) with

which the instantaneous concentration exceeds any particular value ĉ  - this is a function of

(x,y,z,t,ĉ ) - and will also output the variance of this probability distribution. In addition the

ensemble average of the pdoseth power of the instantaneous concentration will be calculated if

required. This quantity (or its time-integral) is often used in calculating the effect of exposure to
fluctuating concentrations (Griffiths 1990). Note that predictions of fluctuations for this case are
likely to be subject to greater errors than in the cases described in §§2.1 and 2.2 above as a result
of the very limited experimental data available with which to test the theory.
 

The structure of the rest of this paper is as follows. §3 describes a scheme used to estimate
the variance of instantaneous concentrations for instantaneous releases in idealised homogeneous
flows and §4 discusses how the ideas in §3 can be used to model the variance of instantaneous
concentrations in more realistic flows. §5 discusses the effect of time-averaging on the variance
while in § the modelling of the probability distribution in terms of its mean and variance is
presented. §7 then discusses the problem of calculating statistics of time-integrated concentrations
for finite duration releases. Finally §8 discusses the interaction between the model and the plume
rise, deposition, radioactive decay, complex terrain, coastline, and building effects modules. The
appendices summarise the notation and equations used.

3. Variance of instantaneous concentrations for instantaneous releases in homogeneous
turbulence 

We start by considering the idealised case of stationary homogeneous turbulence with no
mean velocity and note that the second moments of the concentration field for an instantaneous
source released at time zero are given by 
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where p(y1,y2,0|x1,x2,t) is the probability density function of the positions y1 and y2 that two

particles had at time zero given that they were at positions x1 and x2 at time t. In applying this

result we adopt an approximation introduced by Sawford (1983). Sawford argued that, if we

follow the particles backwards in time from time t to time zero, the displacement of the centre
of mass of particle pairs is close to Gaussian and independent of the particle separation (for

particles that are close at time t). For an instantaneous source centred on the origin this leads to

the result

Here we have assumed that the shape of the source distribution is Gaussian (i.e. proportional to

G3(x,S0)); this assumption is of course unlikely to be accurate in practice but an attempt at a more

precise description seems unwarranted in view of the uncertainties associated with source effects.

Note that when p is Gaussian, the integral ∫ p(r,t)G3(r,S0)dr in (2) is equal to G3(0,S∆+S0). Theory

and random walk simulations show that p is actually more peaked than Gaussian, resulting in an

additional contribution toc 2. We will write ∫ p(r,t)G3(r,S0)dr = µG3(0,S∆+S0), where µ is a factor

related to the non-Gaussianity of p. In conjunction with (2), it is natural, in homogeneous

turbulence, to make a Gaussian assumption for the mean concentration:

We also note that S1, S∆ and S∑  are related by

By using (2) and (3) and some simple assumptions,c 2 can be expressed more simply. Our

aim here is to expressc 2 in terms of the  c -field and as few extra quantities as possible. The
reason for this is to provide a basis for modelling concentration variance in more complex flows,
in particular in flows where the mean concentration distribution is non-Gaussian. A possible
simplifying assumption is to assume that S1, S∆, S∑  and S0 are isotropic. However we will not
assume S0 is isotropic because we wish to use the results below in a framework where the source

size in the y- and z-directions represents the true source dimensions but in which the source size

in the x-direction is related to the release duration. Hence we assume S0 is axi-symmetric about

an axis aligned with the x-direction and for simplicity we make the same assumption about S1,

S∆ and S∑ . This leads to 
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with χ, χx andc 2
m given by

and 

We also note that, using (4), σ∑  and σ∑ x can be expressed as

and

Equations (5) to (10) hold without the axi-symmetric assumption is σ0, σ0x « σ∆ « σ1 (i.e. if t is

large enough for initially close particles to have separated to distances much greater than σ0 and

σ0x, but small enough for the particles' motions to be strongly correlated) since the source size

does not then affect results and S∑  ≈ 2S1. They also hold at large times when σ0, σ0x « σ∆ and

S1 ≈ S∆ ≈ S∑  (i.e. if t is large enough for initially close particles to have separated to distances

much greater that σ0 and σ0x, and also large enough for the particles' motions to be independent).

Finally, in both of the above cases the condition σ0x « σ∆ can be replaced by the requirement that

σ0x be very large (so that the source looks like a line source). For simplicity we will assume

equations (5) to (10) hold more generally - the use of more complicated expressions seems
unwarranted in view of the uncertainties associated with source effects and because of our lack

of detailed understanding of the behaviour in more realistic flows at times when σ∆ is of order

σ1. Note that in reality σ1 and σ∆ satisfy 0 ≤ σ∆ ≤ σ1, σ1x and σ∆x satisfy 0 ≤ σ∆x ≤ σ1x and µ is

greater than or equal to unity. Provided these constraints are satisfied, equations (5) to (10) imply

that 1 ≤ χ,χx ≤ 2 and that σc
2 is non-negative.
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In equations (5) to (10),c 2 is determined by the  c -field, σ1, σ1x, σ∆, σ∆x, σ0, σ0x and µ and

so we will now consider the problem of determining σ∆, σ∆x and µ. Consider first short travel
times, where the separation of particle pairs is dominated by inertial subrange eddies. This range

of travel times can be characterised by σ∆, σ∆x « σ1 or, equivalently, t « TL. In this region inertial

subrange theory predicts that p grows self-similarly and isotropically, with σ∆
2 growing in

proportion to εt3. The random walk simulations of Thomson (1990), which show reasonable

agreement with measurements of concentration fluctuations indicate that

At large times S1 ≈ S∆ with both quantities growing linearly with t. Suitable formulae for σ∆ and

σ∆x which interpolate between the above limiting cases are

and

The selection of a model for µ is more complicated. We will consider a number of

limiting cases where we can estimate µ with a degree of confidence. Consider first the case where

σ0x is very large, so that the source looks like a line source. For t « TL the simulations indicate

that µ equals unity near the source and approaches about 2.8 at longer range, with a transition at

the distance where σ∆   σ0 (see figure 1a). A reasonable approximation to µ is

(see figure 1a). For t » TL, provided σ0 « σ∆, the random walk results for µ can be approximated

by

(see figure 1b). A suitable expression for µ which behaves qualitatively correctly for all times and

source sizes is given by the minimum of the expressions in (13) and (14). The second case we

consider is the case where σ0x = σ0, i.e. we consider a compact isotropic source, For this case the

simulations indicate rather large values of µ with a suitable expression being the minimum of

P13/01E/92
Page 6 of 24



and

(see figure 2a and b). We now need to consider the general case. An appropriate expression for

µ with the right qualitative properties can be obtained as follows. First evaluate (i) the minimum

of (13) and (14) and (ii) the minimum of (15) and (16) with, in (ii), σ0 taken to be the maximum

of σ0 and σ0x. Then take the maximum of these two values of µ.

With the above expressions for σ∆, σ∆x and µ, σc /c̄  tends to zero at large times as might
be expected in truly homogeneous stationary turbulence.

4. Variance of instantaneous concentrations for finite duration and continuous releases

As usual, the dispersion in time from an instantaneous line source aligned with the x-

direction in homogeneous turbulence with no mean flow (i.e. the situation considered in §3 with

σ0x = ∞ ) can be regarded as an approximation to the downwind dispersion from a continuous

compact source in a homogeneous turbulent flow with mean velocity U(» σu). If the line source

is finite in length (due to σ0x being finite) then it can be regarded as an approximation to a finite
duration release. Hence, for continuous or finite duration releases from compact sources, we can

use equations (5) to (16), except that (i) t is replaced by x/U (an approximation to the travel time),

(ii) c̄ m is interpreted as the maximum of the ensemble mean concentration over t, y and z with x

fixed, (iii) c̄ x is replaced by c̄ t, and (iv) σ0x and σ1x are interpreted as U times the spread in release

times and as U times the spread in travel times to the downwind distance x.

We will now consider more realistic, inhomogeneous atmospheric flows and construct a
model based on the above concepts which were developed for idealised flows. Consider first short

travel times, where σ∆ « σ1 and the separation of particle pairs is dominated by inertial subrange

eddies. In this regime we can use the homogeneous results discussed above (i.e. equations (5) to
(16)) with some confidence since the correct scales are represented in the equations. At larger

times the homogeneous results are of less help in parametrizingc 2. In particular inhomogeneity
and shear effects, and possibly also microscale eddies, nearly always become important at large
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travel times and tend to prevent σc /c̄  tending to zero. (Strictly speaking, fluctuations due to

mesoscale eddies do not come within the ambit of the fluctuations module; however, in the
absence of a pronounced spectral gap it is impossible to draw a clear distinction between
fluctuations produced by mesoscale eddies and those produced by the boundary layer turbulence).
Observations of near-surface continuous releases in near-neutral conditions (Fackrell and Robins

1983; Mylne and Mason 1990) suggest σc /c̄  at the point where c̄  = c̄ m is of order unity at large
travel times. Guided by the above we adopt the following pragmatic approach. Equations (5) to

(12) are used with the modifications indicated in the previous paragraph. µ is calculated from

equations (13) to (16) as indicated in §3 (using x/U for t) with the proviso that µ is not allowed

to fall below the value at which the value ofc m
2 / ( c m)2 for a continuous point source (i.e. for σ0

= 0 and σ0x = ∞ ) equals 2. σ2
vel is taken to be (σu

2 + σv
2 + σw

2)/3 and σu, σv, σw, ε and U are

evaluated at the mean plume height z̄  rather than at the height at which σc is required.

To complete the model we need to consider the values of σ1, σ1x, σ0 and σ0x. For the

simplified situation considered in §3, σ1 can be estimated from the c̄ -field using (3). This leads
to

Here c̄ i  is the maximum over y and z (at some fixed time t) of the integral of c̄  in the x-direction.

The corresponding result for homogeneous turbulence with a mean velocity U (as considered in
the first paragraph of this section) is

where c̄ i is now the maximum over y and z (at some fixed downwind distance x) of the time-

integral of c̄ . For more general flows we propose using (17) with U evaluated at height z̄ . This

is consistent with the general approach of trying to expressc 2 in terms of the c̄ - field and as few
extra quantities as possible, as discussed in §3. It is conceivable that, depending on the scheme

used to calculate c̄ i, (17) could lead to a negative value for σ1
2. To avoid this, we impose a

minimum value of 10-6m2 on σ1
2. σ1x is much more difficult to determine from the c̄ -field. This

is because if tR is large the maximum concentration will depend only very weakly on σ1x (this is

especially true if, as would usually be the case, the time-profile of the release has, not a Gaussian,
but a top hat shape). Hence the module requires σ1x as an input variable. Let us now consider σ0

and σ0x. Comparison of random walk results with the data of Fackrell and Robins (1982) (see
Thomson (1990)) suggests that, for uniform sources with circular cross-section, σ0 should be taken

to be the source diameter Ds. For complex source geometries, the model will only be able to give
a general indication of the magnitude of source size effects and some general estimate of the
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length-scale of the source would have to be used. σ0x will be taken to be max(tRU,σ0) with U

evaluated at the mean plume height. For the continuous source case, σ0x is infinite and this results
in a considerable simplification of the equations (see Appendix B for details).

5. The effect of time-averaging

Let us first consider the situation discussed in §3 and consider the correlation between the

concentration at two points x1 and x2 at some time t. We will restrict attention to cases where

σ0 = 0 « σ∆ and σ∆ « σ1 (i.e. t « TL). If |x1 - x2| « σ∆ then, in following a pair of particles

backwards from positions x1 and x2 at time t to time zero, the particles will tend to forget their

initial separation and so, from (1),c ( x 1 , t ) c ( x 2 , t ) ≈c ( x 1 , t ) 2. If however |x1 - x2| » σ∆, then this

will make a large difference to the scale of the particle separation at time zero, and so the
probability that both parties will pass through the source region will be much smaller than the

probability for two particles which are close at time t, and we will have c ( x 1 , t ) c ( x 2 , t )

«c ( x 1 , t ) 2. This indicates that the length-scale of the concentration fluctuations is of order σ∆. If

σ0x is small too (i.e. σ0x « σ∆), then, using Sawford's (1983) approximation in the forward
direction, the correlation between the concentration at two points separated by a vector r takes

the form p (r/  2 ,t)/p (0,t). The results of the random walk simulations (Thomson 1990) indicate
that the integral scale of this correlation function is approximately 0.43σ∆. For larger values of
σ0x it is possible that the coefficient of σ∆ should be a weak function of σ0x /σ∆. At larger times

when σ∆   σ1 and t is of order TL or larger, it is much harder to estimate the length-scale as there

are two possible contenders, σ∆ and the turbulence integral length-scale. This is discussed below
in relation to more complex flows.

Let us now consider more complex flows and restrict attention to continuous releases (i.e.
σ0x = ∞ ) with σ0 « σ∆. For σ∆ « σ1, the ideas in the previous paragraph support the use of a
length-scale proportional to σ∆. At larger times when σ∆   σ1, we retain this assumption, both for

simplicity and because it is consistent with the fact that the model for σc does not allow σc /c̄  to

tend to zero (the fact that σc /c̄  does not approach zero implies the presence of eddies of similar

or larger scale to the plume and hence the generation of some fluctuations on a scale comparable
to the plume width). In order to achieve reasonable agreement with the data of Mylne and Mason
(1990) and Mylne (1992), we choose the length-scale to be, not 0.43σ∆, but 4σ∆ see P13/02. This
change in the coefficient is permissible on theoretical grounds because of the idea that the
coefficient may be a weak function of σ0x /σ∆. Note that we have assumed a single length-scale
at all points in the plume at a given downwind distance and so the module is unable to describe
the variation with height observed by Fackrell and Robins (1982) and Mylne (1992). To represent
such effects it is probably necessary to account in more detail for the variation of turbulence
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properties with height.

We expect the time-scale of concentration fluctuations to be determined by the spatial
fluctuations being carried past the measurement point and so we assume an integral time-scale

Tc of 4σ∆/U where U is the mean velocity at the height where σc is required. As the height of

interest tends to zero, U becomes small and 4σ∆/U tends to infinity. This indicates a failure of the
above argument near the ground, In reality vertical mixing is efficient near the ground, with the
time-scale for mixing from the ground to the height of interest being less than the time-scale for
advection of fluctuations of scale 4σ∆ past the measurement point, Hence the concentration
fluctuations change little in the vertical and are in effect advected by the velocity at some height

zb above the surface. This suggests we should, in calculating Tc, evaluate U at the maximum of

zb and the height of interest. In the neutral surface layer the order of magnitude of zb can be

determined by equating 4σ∆/U, where U is evaluated at height zb, to the time for diffusion

between the surface and height zb, i.e. zb/ku* where k is the von Karman constant. This leads to

For simplicity we will replace ' ' by '=' in this expression and will adopt it more generally in non-

neutral conditions. We take k equal to 0.4.

In order to determine the effect of time-averaging we could try to construct a model of
the shape of the correlation function. However it is simpler for our purposes to adopt an

exponential form with the same integral scale. For an averaging period tav this gives a

concentration variance equal to

where t̂  = tav /Tc.

When σ0 is not much less than σ∆ it is harder to estimate the length-scale of the
concentration fluctuations. The pragmatic approach adopted here is to take the variance of the
(time-averaged) concentration to be the smaller of (i) the variance of the instantaneous
concentration and (ii) the variance of the time-averaged concentration due to a point source (i.e.
σ0 = 0) of the same strength.
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6. Model for the concentration p.d.f.

There are now a number of observations (Lewellen and Sykes 1986; Sawford 1987; Dinar
et al 1988; Mylne and Mason 1990) that indicate that the so-called clipped-normal distribution
is a useful approximation to the p.d.f. of the (possibly time-averaged) concentration at a point,

For this distribution, the probability of the (possible time-averaged) concentration exceeding ĉ  is

given by

where γ and σ are parameters of the distribution. If we make such an assumption it is possible

to calculate γ and σ, and hence P(ĉ ), from  c  and σc (for details see Appendix B). The
intermittency, defined here as the fraction of time when clean air is observed, can be obtained as

1 - P(0) and is an increasing function of σc/ c . The ensemble average of any function of the

(possibly time-averaged) concentration, such as the pdoseth power, can also be deduced. The
'exponential distribution plus intermittency' has also been tested against data and has shown
reasonable agreement in some situations (Sawford 1987; Mylne and Mason 1990). However the

exponential distribution plus intermittency has the property that σc/ c  is never less than unity, and

so is unable to represent cases where σc/ c  is small.

At each point at which output is required, it is necessary to specify the values ĉ  for which

P(ĉ ) is to be calculated. These values need to be able to resolve the spectrum of possible

concentration values quite well (e.g. one may wish to invert the curve P(ĉ ) to obtain the

concentration which is exceeded with a particular probability). Also, if one wishes to combine
results from the calculations for different hours (e.g. to obtain an estimate of the fraction of time
the 3 minute averaged concentration exceeded a particular level over some 24 hour period), then

it is important that the values of ĉ  are the same for each hour and are not related to the mean

concentration. In order to meet these requirements, logarithmical spaced ĉ -values are used so as

to cover a large range without too many values. In order that the ĉ -values at a particular location
are the same for all hours, these values are determined from the source strength and the distance

d from the source using

in S.I. units. d1 determines the overall size of the ĉ -values, d2 the number of ĉ -values per decade

and m the total number of ĉ -values. These values can be specified by the user subject to a

maximum of 100 for m. The values m = 73, d1 = 10-3 and d2 = 8 should be sufficient to cope with
all eventualities, but will often provided unnecessarily many points.
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7. Statistics of time-integrated concentrations for finite duration releases

The statistics of time-integrated concentrations from a finite duration release can be easily
computed from knowledge of the statistics of time-averaged concentrations from a continuous

release. This is because, if the release rate is the same in the two cases and tR = tav, then the time-

integral of the concentration resulting from a release of duration tR has the same statistics as tav

times the average over a period tav (i.e. the time-integral over a period tav) of the concentration
from a continuous release. For this case, the probability of the time-integrated concentration

exceeding ĉ  is calculated for ĉ -values determined as for continuous releases (see §6) but with Q 

replaced by Q.

8. Interaction with the plume rise, deposition, radioactive decay, complex terrain,
coastline and building effects modules

When the plume rise, dry or wet deposition, complex terrain, coastline or building effects
modules are used, the fluctuations module will simply make use of the mean concentration field
as influenced by these modules. It is hoped that plume rise, deposition or complex terrain effects
will not greatly change the plume's structure and so, by making use of the mean concentration
field as influenced by these phenomena, useful estimates of fluctuation statistics can be made.
It is or course true that steep terrain with flow separation and recirculation can have a major effect
on the plume structure, but the complex terrain module is not valid anyway for such situations.

In the case of the complex terrain module it would be better to use values of U and the turbulence

quantities as influenced by the terrain, but for simplicity we have not done this. The situation as
regards the coastline and building effects module is rather different. For the coastline module the
changes in turbulence and mean flow can be substantial across the coast and would be expected
to have a major effect. Hence results should not be regarded as valid if the coastline module is
used. Buildings are likely to cause increased mixing and substantial structural changes to plumes
in building wakes. As a result the concentration fluctuation statistics should not be regarded as
valid where results differ significantly from results in the absence of the buildings. It does seem
likely however that results from the module will predict a larger hazard than occurs in reality
(increased mixing in the building wake will tend to reduce fluctuations).
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The plume rise module includes a prediction for the increased spreading of the
instantaneous plume due to turbulence generated by the plumes' buoyancy. It might be beneficial
to make use of this in the fluctuations module but, for simplicity, we have not done this. This
is likely to lead to a (hopefully small) overprediction of the fluctuation variance and hence of the
hazard.

If removal processes are invoked, the effective source strength is reduced as downwind

distance increases (See P17/01). In such situations the ĉ -values are calculated using the

unmodified source strength and σc and P(ĉ ) are calculated using the source strength and mean

concentration field as modified by the removal processes. This is necessary to ensure that (i)  c i

and the source strength are consistent for use in equation (17), and (ii) the values of ĉ  are the
same for different hours.

When the radioactivity decay module is invoked, mean concentrations are calculated for a
(possibly large) number of species. It is not very practical to use the fluctuations module in such
a situation and, in any case, it is generally accepted that the presence or absence of fluctuations
does not have a large influence on the hazard caused by radioactive substances. In principle the
fluctuations module could be used for the primary emissions by calling the fluctuations module
once for each radioactive species. The main control program would however require modification
to permit this.

Appendix A: Notation

c instantaneous concentration

 c m maximum of  c  over all values of x, y and z for fixed t in the case of the idealised

flows discussed in §3 and the maximum over all values of t, y and z for fixed x

elsewhere

 c x maximum of  c  over all values of x for fixed t, y and z

 c t maximum of  c  over all values of t for fixed x, y and z

 c i maximum of ∫ c dx over all values of y and z for fixed t in the case of the idealised

flows discussed in §3 and the maximum of ∫ c dt over all values of y and z for fixed

x elsewhere

c m
2 value ofc 2 at positions where  c  =  c m

ĉ values of the (possibly time-averaged or time-integrated) concentration for which
exceedance probabilities are calculated

d distance from source to receptor (=   x  2  +  y  2 )

d1 scale factor used in defining the ĉ -values
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d2 number of ĉ -values per decade

Ds source diameter

G3(x,S) the density function of a three-dimensional Gaussian distribution with covariance

matrix S

k von Karman's constant

m number of ĉ -values 

p(r,t) p.d.f. at time zero of 1/  2  times the separation of two particles which are close at

time t

p (r,t) p.d.f. at time t of 1/  2  times the separation of two particles which are close at time
zero

pdose power of concentration used in calculating quantities relevant to toxic response

P(ĉ ) probability of the (possibly time-averaged or time-integrated) concentration

exceeding ĉ 

q source distribution

Q total amount of material released for finite duration releases

Q rate of release of material for continuous sources
S1 covariance matrix of the displacement of a particle
2S∆ covariance matrix of the separation of a pair of particles which are initially close
½S∑ covariance matrix of the displacement of the centre of mass of a pair of particles

which are initially close
S0 covariance matrix of the source distribution

t time after an instantaneous release or travel time to a point a distance x downwind

of a continuous release

tav averaging period for concentration measurements

tR release duration

Tc integral time-scale of concentration fluctuations

TL Lagrangian integral time-scale

U mean wind speed

x,y,z Cartesian coordinates in the downwind, crosswind and vertical directions with

origin centred on the source for the idealised flows considered in §3 and with
origin on the ground below the source elsewhere

x vector with components x, y and z

 z mean plume height at given downwind distance

z0 roughness length
γ,σ parameters of the clipped-normal distribution
ε rate of dissipation of turbulent energy

µ factor related to the non-Gaussianity of p
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σc
2 variance of the (possibly time-averaged or time-integrated) concentration

σu
2,σv

2,σw
2 variance of the x, y and z components of velocity

σvel
2 (σu

2+σv
2+σw

2)/3

For a number of three-dimensional distributions a certain notation is used to denote the extent of

the distributions in the (y,z)-plane and in the x-direction. As an example, consider the distribution

of the displacement of a particle. σ1 is defined by setting σ1
4 equal to the determinant of the (y,z)

sub-matrix of S1 (e.g. σ1
2 = σyσz if S1 = diag(σx

2,σy
2,σz

2)) while σ1x is defined by σ1x
2 σ1

4 = detS1 (e.g.
σ1x = σx for S1 = diag(σx

2,σy
2,σz

2)). σ∆, σ∆x, σ∑ , σ∑ x, σ0 and σ0x are defined similarly in terms of
S∆, S∑  and S0. To further illustrate the significance of these definitions, consider a problem
involving mean shear. In such a situation the density function of the distribution of particle
displacements might be proportional to

for some σx, σy and σz. The above definitions then lead to σ1
2 = σyσz and σ1x = σx. Note that σ1x

is equal to the root mean square along-wind spread at given y and z and is, for given σ1, simply
related to the peak of the density function; it is not however so simply related to the overall
along-wind spread which is increased by the shear. For cases other than the idealised
instantaneous released discussed in §3, the three-dimensional distributions are best interpreted as

distribution over (t,y,z) values instead of (x,y,z) values (see discussion at the start of §4).

Appendix B: Summary of input, output, equations used and numerical procedures

Input

The following information is required as input to the fluctuations module (although some of these
items are not used by the current version of the module):

Name of log dataset

Name of datasets containing the limits on the number of messages to be produced by the
module and the limits within which input variables should lie

The number of the hour being considered (in the sequence of hours given in the met input
dataset)
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Flag to indicate if the module is being called for the first time

Flag to indicate whether the calculation is of the type defined in §2.1, §2.2 or §2.3

Flag to indicate if statistics involving pdose are required

List of coordinates at which output is required

Functions giving σu, σv, σw, ε and U values

z0, Ds, m, d1, d2, and pdose

The remaining variables depend on the calculation type:

Continuous releases (as in §2.1)

 c ,  c m and  z  at the locations where output is required

Q  and tav

Time-integrated results from finite duration releases (as is §2.2)

∫ c dt,  c i and  z  at the locations where output is required

Q and tR

Finite duration releases (as in §2.3)

 c ,  c t,  c i,  c m and  z  at the locations where output is required

Q, tR and σ1x

The values of Q and Q  as amended by the removal processes and without amendment are both

required. The unamended values are used only for calculating the ĉ -values.

Output

The following quantities are output:

Flag to indicate invalid input data (not used at present)
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σc

Ensemble average of the pdoseth power of the (possibly time-averaged of time-integrated)
concentration - this is set to -999 if the flag instructing the module to calculate this
quantity is not set
P(ĉ ) for various values of ĉ  (the ĉ -values are also returned)

Equations Used

For finite duration releases we use

and

µ1is determined as the minimum of
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and

subject to the condition that µ1 must be greater than the value at whichc 2
m/ c 2

m for σ0 = 0 and
σ0x = ∞  equals 2. µ2 is determined as the minimum of

and

For continuous duration releases these equations simplify to
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and

µ is determined as the minimum of

and

subject to the condition that µ must be greater than the value at whichc 2
m/ c 2

m for σ0 = 0 equals 2.

For both finite duration and continuous releases σ2
vel is taken to be (σ2

u + σ2
v + σ2

w)/3. Throughout

the above, σ2
u, σ2

v, σ2
w and ε and U are evaluated, not at the height where σc is required but at the

mean plume height  z .

The variance of the time-averaged concentration for a continuous release is taken to be the

minimum of σc
2(tav = 0) and
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where t̂  = tavU/4σ∆ with U evaluated at the higher of the height of interest and the height zb

defined by

k is taken to be 0.4.

The probability distribution of the (possibly time-averaged) concentration is given by

with γ and σ determined from

and

To avoid possible problems with precision, σc
2 is not allowed to fall below 10-5c̄ 2 for the purpose

of calculating γ and σ. P(ĉ ) is output for values of ĉ  given, in S.I. units, by

For the statistics of the time-integrated concentration from a finite duration source, the above
equations for a continuous release are used, but reinterpreted as indicated in §7. In fact the same
code is used for both cases with the input and output variables being interpreted as indicated in
the input and output lists given above.
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Numerical Procedures

Here we describe the methods used to calculate γ, σ and the ensemble average of the pdoseth

power of the (possibly time-averaged or time-integrated) concentration. γ is calculated from

(σc
2 + c̄ 2)/c̄ 2 using three different approaches according to the size of (σc

2 + c̄ 2)/c̄ 2. For small
values (corresponding to γ > 3.5) the equation for γ has an asymptotic form which enable an
explicit form for γ to be derived, while for large values (corresponding to γ < -3.5) another
asymptotic form exists which can be solved by a rapidly converging iteration. For immediate

values a bisection approach is used. σ is calculated by expressing it in terms of  c  and γ and, as

in calculating γ, asymptotic limits are used for large positive and negative γ. The reason for using
these asymptotic limits (for both γ and σ) is that they are much faster for large positive γ and
much more accurate for large negative γ than using the full equations. The full equations suffer
from precision problems for large negative γ due to the taking of differences of nearly equal
terms; this can lead to errors of orders of magnitude or even of sign. The ensemble average of

the pdoseth power of the (possibly time-averaged or time-integrated) concentration is calculated by
numerical integration using Simpson's rule.
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