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Summary  

 

This paper describes a revision of the scheme used to predict fluctuations from single 

point sources (P13/01, P13/02, P13/03 and P13/04) so as to address the problem of 

predicting fluctuations from anisotropic and multiple sources.  Other changes between 

the ADMS 2 and ADMS 3 schemes are also summarised and some of the schemes are 

presented. 

 

 

 

1. Introduction 
 

 

This paper describes a revision of the scheme presented in P13/01, P13/02, P13/03 

and P13/04 with the aim of predicting fluctuations for the wider range of source 

configurations which were introduced in ADMS 2, namely line, area, volume and 

multiple sources.  Other changes between the ADMS 2 and ADMS 3 schemes are also 

summarised in this paper and some tests of the scheme are presented.  The scheme in 

ADMS 6 is identical to that in ADMS 3, ADMS 4 and ADMS 5 except that it can 

now be used in conjunction with the buildings module. 

 

 There are two main scientific aspects to the revision.  These concern the 

ability to calculate fluctuations for sources with different source length scales in the 

vertical and crosswind directions, and the ability to estimate the covariance of 

fluctuations from pairs of sources.  Taken together these allow us in principle to 

estimate fluctuations for all desired source configurations.  To treat an arbitrary 

source configuration, one can represent it as a collection of point, crosswind line and 

crosswind-vertical area sources.  Once this is done, one has a collection of sources for 

which, with the ability to treat sources with different source length scales in the 

vertical and crosswind directions and to estimate the concentration covariance for 

pairs of sources, one can estimate the overall concentration variance (which is of 

course the sum of the variances from all the individual sources plus twice the sum of 
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the covariances from all the pairs of sources).   One can then estimate the probability 

distribution of the concentration by assuming a ‘clipped-normal’ distribution as in 

ADMS 1 and 2 (see P13/01, §6). 

 

 As in P13/01 we consider three types of scenario corresponding to (i) 

continuous releases with the averaging time for concentration 𝑡𝑎𝑣 specified by the 

user, (ii) time-integrated quantities from finite duration releases, and (iii) 

instantaneous quantities from finite duration releases.  The fluctuations module in 

ADMS 3 onwards does not allow these types to be mixed in a single calculation.  

Also area, volume, line and multiple sources can be treated only for case (i).  For 

cases (ii) and (iii) only point sources can be treated. 

 

 Note that the caveats in §1 and §2 of P13/01 regarding the degree of 

confidence that we have in the model apply here also and, again as mentioned in §1 of 

P13/01, the scheme is restricted to cases where there is an appreciable mean wind 

with 𝑈 ≫ 𝜎𝑢. 

 

 The philosophical questions (‘What do we mean by concentration?’ and 

‘About what do the fluctuations fluctuate?’ etc) discussed in §2 of P13/01 and in 

P13/03 will not be addressed here except to note that we follow the approach used in 

ADMS 2. 

 

 The calculation of long term climatological concentration statistics in a way 

which accounts for fluctuations is not addressed here but is covered in P07/05.  

 

 The structure of the rest of this paper is as follows.  In §2 the notation and 

framework for analysis is presented. §3 describes a scheme to estimate the 

concentration variance for single sources and the concentration covariance for source 

pairs in idealised homogeneous stationary flows.  §4 discusses how the ideas in §3 

can be used to model the variance in more realistic atmospheric boundary layer flows.  

In §5 the interactions with other modules are described.  As a result of the 

modifications to treat multiple and aniostropic sources and some other changes, the 

predictions with the new scheme are not always identical to those from the old 

scheme even in situations where the old scheme is applicable.  These differences are 

summarised in  §6.  Some tests of the scheme (which, as noted above, is slightly 

different from the previous scheme, even for cases where the previous scheme was 

applicable) are presented in §7 and the tuning of the various tunable constants in the 

scheme is discussed.  These tests of the new scheme include some test cases which 

were used in testing the previous scheme and which were reported in P13/02.  

Comparisons between the results presented here and those presented in P13/02 show 

reasonable agreement between the old and new schemes with only one case showing a 

significant difference (namely a somewhat different decay rate of concentration 

variance with averaging time – see figure 7 below and the equivalent figure in 

P13/02), but of course it must be remembered that the tests do not cover the entire 

range of possible scenarios.  Finally the interface with the rest of ADMS is described 

in the appendix.  This paper is not intended as a complete description of the 

fluctuations module and should be read in conjunction with the other ADMS papers 

on fluctuations (P13/01 and P13/03 in particular). 
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2. Notation and framework for analysis 

 

 

Because of the relation between particle pairs and second moments of concentration, 

particle pairs will play a central role in our approach.  We will use X1(𝑡) and X2(𝑡)  to 

denote the trajectories of a pair of particles.  It is sometimes convenient to express X1  

and X2 in a manner related to the separation and centre of mass of the pair of particles.  

To this end we will write, following Durbin (1980), X∆ = (X1 − X2)/√2 and X∑ =

(X1 + X2)/√2.  In the current context it might be more convenient to define X∆ and 

X∑ as the particle separation and centre of mass.  However the additional factors of  

√2 are convenient in other contexts and we retain them for consistency with other 

work.  In general when a given symbol appears with subscripts 1, 2, ∆ and ∑, these 

quantities are to be interpreted as related by (−)∆ = ((−)1 − (−)2)/√2 and (−)∑ =

((−)1 + (−)2)/√2. 

 

 We regard 𝐗1(𝑡) and 𝐗2(𝑡) as random variables in the usual way and, for any 

random vectors 𝐀 and 𝐁 derived from 𝐗1(𝑡) and 𝐗2(𝑡) we use 𝑝𝐀|𝐁(а|𝑏) to indicate 

the probability density function of 𝐀 conditional on 𝐁 = 𝑏.  Ensemble averages will 

be denoted by angle brackets or sometimes, in the interests of compact notation, by 

overbars.  𝐒𝐀|𝐁=𝑏 will denote the covariance matrix of the matrix of the random vector 

𝐀, i.e. 〈(𝐀 − 〈𝐀〉)〉 ⊗ (𝐀 − 〈𝐀〉)〉  conditional on 𝐁 = 𝑏 Here ⊗ denotes a tensor 

product, so that, for example, 𝐀 ⊗ 𝐁 is the tensor 𝐓 with components given by 𝑇𝑖𝑗 =

𝐴𝑖𝐵𝑗.  As an example, consider 𝐒𝐗𝟏(𝑠)|𝚾𝟏(𝑡)=𝐱.  This is the covariance matrix of the 

distribution at time 𝑠 of the particles which were at position 𝐱 at time 𝑡.   Similarly  

𝐒𝐀𝐀´|𝐁=𝑏  denotes 〈(𝐀 − 〈𝐀〉)⨂(𝐀′ − 〈𝐀′〉)〉, again conditional on 𝐁 = 𝑏.  In general 

we will be interested in the concentration statistics at a particular place 𝐱 and time 𝑡.  

In this case the conditioning 𝐗1(𝑡) = 𝐗2(𝑡) = 𝐱 is implied if no conditioning is 

explicitly stated.  We also use the shorter notations 𝐒1, 𝐒∆ and 𝐒∑ for the covariance 

matrices of the displacement of a single particle, the change in the particle separation 

(/√2) and the change in the particle centre of mass (× √2), i.e. 𝐒1(𝑠) = 𝐒𝐗1(𝑠), 

𝐒∆(𝑠) = 𝐒𝐗∆(𝑠) and 𝐒Σ(𝑠) = 𝐒𝐗Σ(s). 

 

 The various 𝐒 matrices will usually be diagonal in our preferred frame of 

reference.  In this case the various components will be denoted by 𝜎2 so that, for 

example, we have  

 

    𝐒1 = (

𝜎1𝑥
2 0 0

0 𝜎1𝑦
2 0

0 0 𝜎1𝑧

2

) 
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and 

    𝐒Δ = (

𝜎Δ𝑥
2 0 0

0 𝜎Δ𝑦
2 0

0 0 𝜎Δ𝑧

2

) 

 

 

 All sources will be assumed to have a Gaussian shape.  This assumption is of 

course unlikely to be accurate in practice, but an attempt at a more precise description 

seems unwarranted in view of the uncertainties associated with source effects.  It 

would be possible, in principle, to represent a source distribution more accurately by 

representing it as a combination of several smaller (Gaussian) sources.  It might even 

be possible to do the integrals in §3 below for a wider variety of shapes, but we will 

not explore this here.   

 

We will use 𝐺λ(𝐱, 𝐒) to denote a λ-dimensional Gaussian distribution with covariance 

matrix 𝐒.  We note that the deductions in §3 below require a number of integrals of 

Gaussian distributions.  In general these are most easily carried out, not analytically 

from first principles, but by using general properties of Gaussian distributions such as 

the convolution property  

 

   ∫ 𝐺𝜆(𝐱 − 𝐲, 𝐒)𝐺𝜆(𝐲 − 𝐳, 𝐒′)𝑑𝐲 = 𝐺𝜆(𝐱 − 𝐳, 𝐒 + 𝐒′)) 

 

which reflects the fact that the sum of two independent Gaussian random variables is 

Gaussian with mean and variance given by the sum of the means and variables of the 

two random variables. 
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3. Second moments of concentration in homogeneous 

stationary turbulence 
 

 

We start by considering the idealised case of instantaneous sources in stationary 

homogeneous turbulence with no mean velocity.  The idea behind considering this 

case is that, as often done in such situations, the dispersion as a function of time in 

this flow can be regarded, via a Taylor-type transformation, as approximating the 

dispersion as a function of downwind distance divided by wind speed in a flow with 

an appreciable mean wind.  As an example the dispersion in time from a line source 

can be regarded as an approximation to the dispersion with downwind distance from a 

point source in a mean wind (the wind direction and the line source in the two flows 

being in the same direction).  See Townsend (1954) for a discussion of the similar 

situation involving instantaneous area and continuous cross-wind line sources. 

 

 Because we consider only instantaneous sources, the results are, when 

translated to situations with an appreciable mean wind, directly applicable only to 

sources with no along wind extent.  The approach can however be extended to treat 

sources with an along wind extent either by ignoring the along wind extent, or by 

splitting the source into subsources as described in §1 and  §4. 

 

 For a single source, the second moments of the concentration field c(𝐱, 𝑡) for a 

source released at time 𝑠 are given by 

  

  𝑐(𝐱, 𝑡)𝑐(𝐱, 𝑡) = ∫ 𝒑𝐗1(𝑠),𝐗2(𝑠) (𝐲1, 𝐲2)𝑞(𝐲1)𝑞(𝒚2)𝑑𝒚1𝑑𝒚2  (1) 

 

where 𝑞(𝐱) is the source distribution as a function of position.  In applying this result 

we adopt an approximation introduced by Sawford (1983).  Sawford argued that, if 

we follow the particles backwards in time from time 𝑡 to time 𝑠, the displacement of 

the centre of mass of particle pairs is close to Gaussian and independent of the particle 

separation.  For a Gaussian source centred on 𝐲 with integrated source strength (total 

mass released) 𝑄 and with source distribution covariance matrix 𝐒0 (so that 𝑞(𝐱) =

𝑄𝐺3(𝐱‐ 𝐲, 𝐒0)) this leads to the result  

 

 𝑐2(𝐱) = 𝑄2𝐺3 ((𝐱 − 𝐲)√2, 𝐒Σ + 𝐒0) ∫ 𝑝𝐗Δ(𝑠)(𝐲Δ) 𝐺3(𝐲Δ, 𝐒0)𝑑𝐲Δ.   (2) 

 

Note that when 𝑝𝐗∆(𝑠) is Gaussian, the integral in (2) is equal to 𝐺3(0, 𝐒∆ + 𝐒0).  

Theory and random walk simulations show that 𝑝𝐗∆(𝑠) is actually more peaked than 

Gaussian, resulting in an additional contribution to 𝑐2̅̅ ̅.  We will write the integral in 

(2) as 𝜇𝐺3(0, 𝐒Δ + 𝐒0), where 𝜇 is a factor related to the non-Gaussianity of 𝑝𝐗∆(𝑠).  

This leads to  

 𝑐2̅̅ ̅(𝐱) = 𝑄2𝜇𝐺3 ((𝐱 − 𝐲)√2, 𝐒∑ + 𝐒0) 𝐺3(0, 𝐒∆ + 𝐒0). (3) 

 

In conjunction with the Sawford approximation, it is natural, in homogeneous 

turbulence, to make a Gaussian assumption for the mean concentration: 

 

 𝑐̅(𝐱) = 𝑄𝐺3(𝐱 − 𝐲, 𝐒1 + 𝐒0). (4) 
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Let us now consider two instantaneous sources at times 𝑠1 and 𝑠2.  We consider two 

distinct times 𝑠1 and 𝑠2 here since once we transform from time to downwind distance 

divided by wind speed as discussed above, this will enable us to treat sources which 

are separated in the along wind as well as in the crosswind or vertical directions.  

Suffixes 1 and 2 will be used to denote properties associated with each of the two 

sources.  For example, as well as 𝑠1 being the release time for source 1, we will use 𝑐1  

to indicate the concentration resulting from source 1 and 𝑞1 to denote the source 

distribution 1.  The equivalent result to (1) is 

 

  𝑐(𝐱, 𝑡)𝑐(𝐱, 𝑡) = ∫ 𝑝𝐗1(𝑠1),𝐗2(𝑠2)(𝐲1, 𝐲2)𝑞1(𝐲1)𝑞2(𝐲2)𝑑𝐲1𝑑𝐲2. 

 

In applying this result we extend Sawford’s approximation by making the assumption 

that, if we follow the particles backwards in time from time 𝑡, the displacements of 

the centres of mass of particles pairs at time 𝑠1 and 𝑠2 are jointly Gaussian and 

independent of the particle separations at times 𝑠1 and 𝑠2.  As with Sawford’s original 

approximation, the joint Gaussianity of the centres of mass is likely to be reasonably 

accurate because the centre of mass motions are dominated by the energy-containing 

eddies, while the independence assumption is supported by the fact the variables 

concerned are uncorrelated.  (We note that an alternative extension of Sawford’s 

approximation based on assuming the independence of 𝐗1(𝑠1) − 𝐗2(𝑠2) and  

𝐗1(𝑠1) + 𝐗2(𝑠2) is not appropriate because 𝐗1(𝑠1) − 𝐗2(𝑠2) and 𝐗1(𝑠1) + 𝐗2(𝑠2)  

are in general correlated.  For the case 𝑠1 = 𝑠2 no extension of Sawford’s 

approximation is needed and our extension reduces to Sawford’s original 

approximation.)  For Gaussian sources this leads to an expression analogous to (2) 

although considerably more complex.  For our purposes it is simplest to pass directly 

to the expression analogous to (3) which results when we (i) assume the particle 

separations at times 𝑠1 and 𝑠2 are jointly Gaussian and (ii) introduce a factor 𝜇12 to 

represent the non-Gaussianity of 𝑝𝐗Δ(𝑠1),𝐗Δ(𝑠2).  For Gaussian sources centred on 𝐲1  

and 𝐲2 with integrated source strengths 𝑄1 and 𝑄2 and with source distribution 

covariance matrices 𝐒01 and 𝐒02, this leads to the result 

 

𝑐1𝑐2(𝐱) = 𝑄1𝑄2𝜇12𝐺6 ((𝐲1 − 𝐱, 𝐲2 − 𝐱), (
𝐒𝐗1(𝑠1) + 𝐒01 𝐒𝐗1(𝑠1)𝐗2(𝑠2)

𝐒𝐗1(𝑠1)𝐗2(𝑠2) 𝐒𝐗2(𝑠2) + 𝐒02
))    (5) 

 

Note that the result for a single source can be expressed in the analogous form 

 

 𝑐2̅̅ ̅(𝐱) = 𝑄2𝜇𝐺6 ((𝐲 − 𝐱, 𝐲 − 𝐱), (
𝐒1(𝑠) + 𝐒0 𝐒𝐗1(𝑠)𝐗2(𝑠)

𝐒𝐗1(𝑠)𝐗2(𝑠) 𝐒1(𝑠) + 𝐒0
))   (6) 

 

showing, as expected, that the single source result is a special case of the two source 

result obtained by putting 𝑐1 = 𝑐2 = 𝑐, 𝑄1 = 𝑄2 = 𝑄, 𝜇12 = 𝜇, 𝐲𝟏 = 𝐲𝟐 = 𝐲, 𝑠1 =
𝑠2 = 𝑠,  𝐒01 = 𝐒02 = 𝐒0 and 𝐒𝐱1(s1) = 𝐒𝐱2(s2) = 𝐒1(𝑠).  The expression (6) is 

equivalent to (3) but can be derived more simply by making the joint Gaussian 

assumption at the outset as we did in deriving (5).  The expression (3) in terms of 

separation and centre of mass coordinates is more convenient however because of the 

fact that, in these coordinates, the Gaussian factorises into two Gaussians.  It is a 

general property of much of the following analysis that the one-source results are a 
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special case of the two-source results but, because of the aim of expressing the one-

source results as simply as possible, this is not always immediately apparent from the 

form of the equations. 

 

Some light can be shed on the above equations and, in particular, on the 

quantities 𝜇 and 𝜇12 by comparing the equations with the results obtained from 

Gifford’s (1959) fluctuating (meandering might be a better word – there are no in-

plume fluctuations) plume model (see also Sykes (1984)).  Gifford assumed a 

Gaussian instantaneous plume with no internal fluctuations which meanders with the 

plume centroid position varying randomly according to a Gaussian distribution (see 

figure 1 (a)).  In the current instantaneous-source context we consider Gaussian puffs 

(one or two according to whether we are considering one or two sources) without 

internal fluctuations and with centroid positions varying between realisations 

according to a Gaussian distribution (or, for two sources, a joint Gaussian 

distribution).  𝐒𝑖 will denote the covariance matrix of the concentration distribution 

within such a puff and 𝐌 will denote the position of the puff centroid.  This leads to 

 

                      𝑐2̅̅ ̅(𝐱) =  𝑄2𝐺3 ((𝐱 − 𝐲)√2, 𝐒𝑖 +  2𝐒𝐌) 𝐺3(0, 𝐒𝑖)                                 (7) 

  

for one source and 

 𝑐1𝑐2(𝐱) = 𝑄1𝑄2𝐺6 ((𝐲1 − 𝐱, 𝐲2 − 𝐱), (
𝐒𝑖1 + 𝐒𝐌1

𝐒𝐌1𝐌2

𝐒𝐌1𝐌2
𝐒𝑖2 + 𝐒𝐌2

))    (8) 

 

 

for two sources.  These equations have the same form as the results obtained using the 

Sawford approximation (equations (3), (5) and (6)) if we take 𝜇 and 𝜇12 to be unity in 

the Sawford approximation.  (Note we have chosen to express the one-source result in 

a form analogous to (3) rather than (6) but it can be re-expressed in a form similar to 

(6).)  We would like to conclude that the departure of 𝜇 and 𝜇12 from unity reflects in-

puff fluctuations (or in-plume fluctuations if we consider a line source and interpret it 

as a continuously emitting point source via the Taylor-type transformation discussed 

above).  However this is not quite true.  Firstly 𝐒𝐗1(𝑠1)𝐗2(𝑠2) in (5) is not in general 

equal to 𝐒𝐌1𝐌2
 in (8).  This is easy to see because 𝐒𝐌1𝐌2

varies with 𝐲1 − 𝐲2 while 

𝐒𝐗1(𝑠1)𝐗2(𝑠2) doesn’t.  Secondly, even for a single source we have 𝐒𝑖 ≠ 𝐒0 + 𝐒∆.  This 

is because, near the source where size is important, we expect 𝐒𝑖 to grow from 𝐒0  

faster than 𝐒∆ grows from zero – particles on opposite sides of the source (which 

contribute to 𝐒i)  can separate as a result of velocity differences across the source 

while initially close particles (which contribute to 𝐒∆)  can only separate due to the 

smallest eddies.  Even at larger times when source size is forgotten, we expect 𝐒𝑖 to 

equal the forward separation covariance matrix 𝐒𝐗∆(𝑡)|𝐗∆(𝑠)=0 not the backward one 

𝐒𝐗∆(𝑠)|𝐗∆(𝑡)=0 (that it does equal the forward one is a classical result, Batchelor 

(1952)).  It is possible however to formulate the fluctuating puff model in the 

backwards direction (see figure 1(b)) and it is true to say that the Sawford 

approximation to backwards dispersion with 𝑝𝐗∆(𝑠) or 𝑝𝐗∆(𝑠1),𝐗∆(𝑠2) assumed Gaussian 

(or equivalently simply approximating 𝑝𝐗1(𝑠),𝐗2(𝑠) or 𝑝𝐗1(𝑠1),𝐗2(𝑠2) directly by a 

Gaussian) is exactly equivalent to making a Gifford-type fluctuating puff assumption 

for the backwards dispersion (i.e. to assuming backwards travelling Gaussian puffs 

originating from a point source at 𝐱 at time 𝑡 and varying between realisations only 
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through Gaussian displacements of their centroids).  If we accept that the errors in the 

Sawford approximation and in assuming Gaussian centroid displacements and a 

Gaussian shape for the mean instantaneous puff (i.e. for the mean of the centroid-

aligned puffs) are small, then we can say that the departure of 𝜇 and 𝜇12 from unity 

reflects in-puff fluctuations in the backwards puff. 

 

 For completeness we note that the above extends easily to two-point moments 

𝑐(𝐱𝟏)𝑐(𝐱𝟐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   The backwards fluctuating puff model then of course involves two puffs 

starting at 𝐱1 and 𝐱2.  The fact that the Sawford approximation has a clearer relation 

to the backwards fluctuating puff model than to the forwards model is perhaps not 

surprising because the Sawford approximation is formulated in terms of backwards 

dispersion.  There is of course (by symmetry) a similar relation between the forward 

Sawford approximation and the forward fluctuating puff model if we restrict 

ourselves to point sources with  𝑠1 = 𝑠2  (but allow the possibility of volume average 

concentrations, possibly at two times).  It seems unlikely however that any such clear 

relationship is possible for the forwards Sawford approximation from extended 

sources or for the backwards Sawford approximation with volume average 

concentrations – both cases involve integrations over values of the ‘initial’ (i.e. the 

conditioning) particle separation and so are analytically rather intractable.  In addition 

it is unclear how a Sawford-type approximation might be formulated with two 

conditioning times.  These problems are the reason we use the backwards Sawford 

approximation here – we wish to be able to treat extended sources with 𝑠1 ≠ 𝑠2  easily 

and are not so concerned about volume averaging effects or two time (or indeed two-

point) moments.  (We do however have some interest in time averaged fluctuations.  

Because of the above the treatment of these is rather messy – see below.)   

 

 As well as providing some insight into the significance of 𝜇 and 𝜇12 the 

fluctuating plume approach is useful for showing that our approach will predict 

positive variance and correlations lying between ±1.  

 

 By using some simple assumptions, 𝑐2̅̅ ̅ and, for two sources, 𝑐1𝑐2 can be 

expressed more simply.  Our aim here is to express  𝑐2̅̅ ̅ and 𝑐1𝑐2 in terms of the 

𝑐 ‐field (or 𝑐1 and 𝑐2 fields) and as few extra quantities as possible.  The reason for 

this is to provide a basis for modelling concentration variance in more complex flows, 

in particular in flows where the mean concentration distribution is non-Gaussian.  We 

assume the various 𝐒 matrices are diagonal in a frame with coordinates 𝑥, 𝑦, 𝑧.  This 

leads to  

 

    𝑐2 = 𝜇𝑐�̅�
2 𝑔𝑥𝑔𝑦𝑔𝑧𝑓𝑥𝑓𝑦𝑓𝑧    (9) 

 

for one source and 

 

𝑐1𝑐2 = 𝜇12𝑐1𝑚𝑐2𝑚𝑔𝑥𝑔𝑦𝑔𝑧𝑓𝑥𝑓𝑦𝑓𝑧   (10) 

 

for two sources.  Here 𝑐�̅� is the spatial peak concentration, the 𝘨 factors relate the 

overall level of the second order moments to the first order moments, and the 𝑓 

factors describe the spatial variation of the second order moments.  For the one source 

case 
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𝑔𝑥

2 =
(𝜎1𝑥

2 + 𝜎0𝑥
2 )2

(𝜎Δ𝑥
2 + 𝜎0𝑥

2 )(𝜎Σ𝑥
2 + 𝜎0𝑥

2 )
 

(11) 

 

and 

 

 𝑓𝑥 = ℎ𝑥
χ𝑥 (12) 

 

where 

 

 
𝜒𝑠 = 2

𝜎1𝑥
2 + 𝜎0𝑥

2

𝜎∑𝑥
2 + 𝜎0𝑥

2 . 
(13) 

 

 

𝘨𝑦, 𝘨𝑧, 𝑓𝑦 and 𝑓𝑧 are defined similarly.  ℎ𝑥, ℎ𝑦 and ℎ𝑧 are the ‘shape factors’ 

corresponding to the way the concentration falls off in the 𝑥, 𝑦 and 𝑧 directions, and 

are defined so that 𝑐 = 𝑐𝑚ℎ𝑥ℎ𝑦ℎ𝑧.  These equations correspond to equations (5) to 

(10) in P13/01, although they are expressed a little differently.  We note that the 

components of  𝜎∑  can be expressed as 

 

 

 

 𝜎∑
2 = 2𝜎1

2 − 𝜎∆
2 (14) 

 

For the two source case we have 

 

 𝘨𝑥
2 =

𝑎𝑐

𝑎𝑐 − 𝑏2
 

(15) 

 

and 

 𝑓𝑥 = (ℎ1𝑥ℎ2𝑥)𝜒𝑥exp(−𝛽𝑥√logℎ1𝑥logℎ2𝑥) (16) 

 

where 

 𝜒𝑥 =
𝑎𝑐

𝑎𝑐 − 𝑏2
(= 𝘨𝑥

2) 
(17) 

 

and 

 
𝛽𝑥 = −

2𝑏√𝑎𝑐

𝑎𝑐 − 𝑏2
sign𝑥 

(18) 

 

with 

 

 𝑎 = 𝜎1
2(𝑠1) + 𝜎01

2  (19) 

 

 𝑏 = 𝜎𝐗1(𝑠1)𝐗2(𝑠2)

2  (20) 

 

and 

 

 𝑐 = 𝜎1
2(𝑠2) + 𝜎02

2  (21) 
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where we have suppressed the suffix 𝑥 in these last equations for clarity.  sign𝑥  

equals 1 if the output point lies outside the sources in the 𝑥‐direction and ‐1 if the 

output point lies between the sources. 

 

 For the one source case (equation (9) and equations (11) to (14)), 𝑐2 is 

determined by the 𝑐 ‐field, by the 𝑥, 𝑦 and 𝑧 components of 𝜎1(𝑠),  𝜎∆(𝑠) and 𝜎0, and 

by 𝜇. For the two source case (equation (10) and equations (15) to (21)), 𝑐1𝑐2̅̅ ̅̅ ̅ is 

determined by the 𝑐1 and 𝑐2 fields, by the 𝑥, 𝑦 and 𝑧 components of 𝜎1(𝑠1), 𝜎1(𝑠2), 

𝜎𝐗1(𝑠1)𝐗2(𝑠2)
2 , 𝜎01 and 𝜎02, and by 𝜇12. 

 

 We will now consider the problem of determining 𝜎∆. Consider first short 

travel times, where the separation of particles pairs is dominated by inertial subrange 

eddies.  This range of travel times can be characterised by 𝜎∆ ≪ 𝜎1 or, equivalently,  

𝑡‐ 𝑠 ≪ 𝑇𝐿  (where 𝑇𝐿  is the Lagrangian time scale).  In this region inertial subrange 

theory predicts that 𝑝𝐗Δ
 grows self-similarly and isotropically, with 𝜎∆

2 growing in 

proportion to 𝜀(𝑡 − 𝑠)3.  The random walk simulations of Thompson (1990), which 

show reasonable agreement with measurements of concentration fluctuations, indicate 

that 

 

 

𝜎Δ
2 ≃ 𝜀(𝑡 − 𝑠)3/3. 

 

At large times 𝐒1 ≃  𝐒Δ with both growing linearly with 𝑡.  In ADMS 1 and 2 we 

interpolated between these limiting cases by using  

     
1

𝜎Δ
=

1

𝜎1
+

1

(𝜀(𝑡 − 𝑠)3/3)
1

2⁄
 

 

This formula performed quite well, although it resulted in 𝜎𝑐 values which were 

perhaps a little on the high side (see P13/02).  In fact there is little theoretical reason 

to prefer one interpolation over another and retaining the same formula is not likely to 

preserve the previous (fortuitously) good performance because of other changes to the 

fluctuations scheme.  Hence we adopt an interpolation formula which gives some 

scope for tuning, namely 

 

 
𝜎∆

2 =
𝜎1

2𝑅2

𝜎1
2 + 𝐴0𝜎1𝑅 + 𝑅2

 
(22) 

 

where 𝑅2 = 𝜀(𝑡 − 𝑠)3/3 and 𝐴0 is a tunable constant lying in the range (0,2).   𝐴0 =
 2 corresponds to the previous approach while 𝐴0 = 0 corresponds to a similar 

interpolation using squared quantities, i.e. 

      
1

𝜎Δ
2 =

1

𝜎1
2 +

1

𝜀(𝑡 − 𝑠)3/3
 

 

(22) is applied separately to the 𝑥, 𝑦 and 𝑧 components. 
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The selection of a model for 𝜇 is more complicated.  In P13/01 we presented a 

model suitable for point and line sources and we extend this to area sources using the 

same methodology.  For infinite area sources we take 𝜇 to equal 𝜇𝐴 defined as the 

minimum of 

    

 {
1
1

1.4
+ 0.4log((𝜎Δ 𝜎0⁄ ) 0.7⁄ )/ log(9 0.7⁄ )

      𝜎Δ/𝜎0 ≤ 0.7
      0.7 ≤ 𝜎Δ/𝜎0 ≤ 9
       9 ≤ 𝜎Δ/𝜎0

           (23) 

 

   

and 

 

 max (1,1.4 − (0.4/3)𝑡𝜀/𝜎𝑣𝑒𝑙
2  ) (24) 

 

Here 𝜎𝑣𝑒𝑙
2  is the average of the variances of the three components of velocity.  For 

infinite line sources we take 𝜇 to equal 𝜇𝐿 defined as the minimum of  

 

{
1
1

2.8
+ 1.8log((𝜎Δ 𝜎0⁄ ) 0.9⁄ )/ log(17/0.9) 

      𝜎Δ/𝜎0 ≤ 0.9
     0.7 ≤ 𝜎Δ/𝜎0 ≤ 17
      17 ≤ 𝜎Δ/𝜎0

 (25) 

 

and 

 

 max (1,2.8 − 0.6 𝑡𝜀/𝜎𝑣𝑒𝑙
2  )  (26) 

 

For isotropic point sources we take 𝜇 to equal 𝜇𝑝 defined as the minimum of  

 

{
1
1

12
+ 11log((𝜎Δ 𝜎0⁄ ) 1⁄ )/ log(100/1)

    𝜎Δ/𝜎0 ≤ 1
    1 ≤ 𝜎Δ/𝜎0 ≤ 100
    100 ≤ 𝜎Δ/𝜎0

  (27) 

 

and 

 

 max (1,12 − (11/3)𝑡𝜀/𝜎𝑣𝑒𝑙
2 )  (28) 

  

We now need to consider more general sources.  An appropriate expression for 𝜇 with 

the right qualitative properties can be obtained as follows.  Consider the three 

components of 𝜎Δ/𝜎0, namely 𝜎∆𝑥/𝜎0𝑥, 𝜎∆𝑦/𝜎0𝑦 and 𝜎∆𝑧/𝜎0𝑧  Set (𝜎Δ/𝜎0)𝐴 equal to 

the largest component (i.e. the value most appropriate if the source is considered as an 

area source), (𝜎Δ/𝜎0)𝐿 equal to the middle component and (𝜎Δ/𝜎0)𝑃 equal to the 

smallest.  Then evaluate 𝜇𝐴 using (𝜎Δ/𝜎0)𝐴, 𝜇𝐿 using (𝜎Δ/𝜎0)𝐿 and 𝜇𝑃 using 
(𝜎Δ/𝜎0)𝑃  and take the largest of the three resultant 𝜇 values.  It is easily checked that 

the value of 𝜇 obtained behaves appropriately. Consider, for example, an area source 

of finite area.  At close range (where the source can be approximated by an infinite 

area source) 𝜇 will be given by 𝜇𝐴, whereas at large distances (where the source can 

be approximated by a point source) 𝜇 will be given by 𝜇𝑝. 
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We now need to consider the two source quantities 𝜎2
𝐗1(𝑠1)𝐗2(𝑠2) and 𝜇12. If 𝑠1 =

𝑠2 = 𝑠  then 𝜎2
𝐗1(𝑠1)𝐗2(𝑠2) = 𝜎1

2(𝑠) − 𝜎Δ
2(𝑠).  In general we take 

 

  𝜎2
𝐗1(𝑠1)𝐗2(𝑠2) = ((𝜎1

2(𝑠1) − 𝜎Δ
2(𝑠1)) (𝜎1

2(𝑠2) − 𝜎Δ
2(𝑠2)))

1
2⁄

  

 

(evaluated separately for 𝑥, 𝑦 and 𝑧 components).  This is consistent with straight line 

motion at small travel times and tends to zero at large travel times.  𝜇12 is a little more 

complex.  Inspired by the exact form for 𝜇12 (analogous to the equation 

 

  ∫ 𝑝𝐗Δ(𝑠)(𝐲Δ)𝐺3(𝐲Δ, 𝐒0)𝑑𝐲Δ = 𝜇𝐺3(0, 𝐒Δ + 𝐒0)  

 

for the one source 𝜇)  we re-evaluate the one source 𝜇’s for each source with 𝜎0
2  

replaced (component-wise) by 

 

  
1

2
(𝜎1(𝑠1) − 𝜎1(𝑠2))2 +

1

2
(𝜎01

2 + 𝜎02
2 ) + 𝐴1𝑦Δ

2           (29) 

 

and take 𝜇12 equal to unity plus the geometric means of the two 𝜇 ‐1’s.  Note 𝑦∆ here 

is the appropriate component of 𝐲∆, the source separation vector (/√2).  𝐴1 is a 

tunable constant. 

 

 The above gives us a model which expresses the (one-point) second moments 

of the concentration in terms of the turbulence statistics (𝜎𝑣𝑒𝑙
2  and 𝜀), travel time   𝑡 −

𝑠 for each source, source properties (𝜎0 components for each source and, for the 

multiple source case, 𝑦∆ components for each pair of sources), and the mean 

concentration field (𝑐𝑚,  shape factors ℎ, and 𝜎1 components). 

 

 We now consider the problem of the effect of time averaging on the second 

moments of concentration (in the presence of a significant mean velocity).  We adopt 

a somewhat different approach to that in ADMS 1 and 2 in order to provide for 

inertial-meander subrange behaviour (Thompson 1997) and in order to allow the 

possibility of negative correlations between concentrations from different sources 

becoming more negative as averaging time increases (this can occur if the 

instantaneous plumes are very intermittent and is hard to treat within the context of 

the simple damping used in ADMS 1 and 2).  As in ADMS 1 and 2 we treat time 

averaging over a finite interval 𝑡𝑎𝑣 only for type (i) scenarios – i.e. continuous 

releases or, in the Taylor transformed frame, instantaneous sources with infinite 

extent in the direction, 𝑥 say, corresponding to the mean flow.  In keeping with the 

view throughout most of this section, we work in the Taylor-transformed frame and so 

deal with averages over a distance 𝑥𝑎𝑣 = 𝑈𝑡𝑎𝑣  in the 𝑥 direction.  Our approach is to 

allow for averaging time (i) by increasing the 𝜎∆’s to account for the widening of the 

time-averaged plume (or puff) and (ii) by damping the 𝜇 −1’s to account for the 

damping of ‘in-plume’ (or in-puff’) fluctuations.  Note we damp 𝜇 −1 rather than 𝜇  

because it is the departure of 𝜇 from unity which represents the in-plume fluctuations.  

In detail we calculate a damping factor 𝑑𝜇 for 𝜇‐1 from 

 

 
𝑑𝜇 =

1

1 + 𝑥𝑎𝑣/𝐿𝑐
 

(30) 
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with 𝐿𝑐 given by  

 

 1

𝐿𝑐
=

1

𝐴2(𝜀(𝑡 − 𝑠)3)
1

2⁄
+

1

𝐴3(𝜎𝑣𝑒𝑙
3 𝜖⁄ )

 
(31) 

 

𝐿𝑐 is the spatial scale of the ‘in-plume’ (or ‘in-puff’) fluctuations.  We could probably 

do better here, e.g. by taking account of the inertial-convective subrange scaling of the 

in-plume fluctuations, but we wish to keep the model reasonably simple.  We then 

calculate the effective 𝜎∆ for the averaged plume, �̂�Δ, by modifying the equation (22) 

for 𝜎∆ to 

 

 
�̂�∆

2 =
𝜎1

2�̂�2

𝜎1
2 + 𝐴0𝜎1�̂� + �̂�2

 
(32) 

 

 

(applied component-wise) where 

 

   

�̂�2 = 𝜀(𝑡 − 𝑠)3 3⁄ + (4𝐶 27⁄ )𝜀2 3⁄ 𝑥𝑎𝑣
2 3⁄ (𝑡 − 𝑠)2 + 

    (𝐴4𝜎𝑣𝑒𝑙
2 (𝑡 − 𝑠)2 + 𝐴5𝜀(𝑡 − 𝑠)3)𝑥𝑎𝑣

2 𝜀2/𝜎𝑣𝑒𝑙
6             (33) 

 

𝐶 is the Kolmogorov constant in the longitudinal velocity structure function and is 

taken here to be 2.  𝐴2, 𝐴3, 𝐴4 and 𝐴5 are tunable constants.  For 𝑡 ≪ 𝑇𝐿 and 𝑥𝑎𝑣  

much smaller than the integral scale of the turbulence, the second term in (33) 

dominates the difference between �̂�∆ and 𝜎∆ and is designed to give the correct 

inertial-meander subrange behaviour (Thompson 1997).  For larger 𝑡 or larger 𝑥𝑎𝑣  

the third term in (33) ensures that �̂�∆ approaches 𝜎1 as 𝑥𝑎𝑣 increases beyond the 

integral scale of the turbulence.  𝑑𝜇 and �̂�∆ are calculated separately for each source.  

For each source we then calculate 𝑐2 using the �̂�∆ and a modified 𝜇 calculated as 

 

 �̂� = 1 + (𝜇 − 1)𝑑𝜇. (34) 

 

For a pair of sources we calculate  𝑐1𝑐2 using the �̂�∆’s for each source and a modified 

𝜇12  calculated as 

 

 �̂�12 = 1 + (𝜇12 − 1)(𝑑𝜇1𝑑𝜇2)1 2⁄  (35) 

 

Finally we consider the problem of the statistics of time-integrated concentrations 

from a finite duration release (in the presence of a significant mean velocity).  We 

treat this case for single sources only.  In the Taylor-transformed frame this amounts 

to considering 𝑥‐integrated concentrations for instantaneous sources with finite 𝜎0𝑥.  

As in ADMS 1 and 2 we treat this by assuming a reciprocity relation – namely we 

assume that the statistics of the time-integrated concentration for a release of duration 

𝑡𝑅 are the same as those for the concentration integrated over 𝑡𝑎𝑣 (i.e. 𝑡𝑎𝑣 times the 

time-averaged concentration) from a continuous release with the same release rate for 

𝑡𝑎𝑣 equal to 𝑡𝑅.  This reciprocity relation is not exact because turbulence is not 
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(statistically) invariant under time reversal.  However any lack of symmetry here 

could only be accounted for in a much more sophisticated approach.  Also it is not 

exact when source size is important – this is because we are swapping the 𝑡‐extent of 

the source and receptor but not the spatial extent (or the 𝑥 but not the 𝑦 and 𝑧 extents 

in the Taylor transformed frame).  We treat only single sources for this case because, 

for multiple sources with different locations and release periods, applying the same 

idea would require us to estimate two-point (in space and time) concentration 

correlations. 

 

 Once the concentration variance has been estimated, the probability 

distribution of the concentration can be estimated by assuming a clipped normal 

distribution as in ADMS 1 and 2 (see P13/01).  We truncate this at the 99.999th 

percentile to avoid very large concentrations. 
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4. Second moments of concentration in the atmospheric 

boundary layer 

 

As discussed above, the dispersion in time from an instantaneous line source aligned 

with the 𝑥‐direction  in homogenous turbulence with no mean flow (i.e. the situation 

considered in §3 with 𝜎0𝑥 = ∞) can be regarded as an approximation to the 

downwind dispersion from a continuous point source in a homogeneous turbulent 

flow with mean velocity 𝑈(≫ 𝜎𝑢).  If the line source is finite in length (due to 𝜎0𝑥 

being finite) then it can be regarded as an approximation to a finite duration release.  

Hence, for continuous or finite duration releases in a homogeneous turbulent flow 

with a mean velocity, we can use results in §3. 

 

 In more realistic inhomogeneous atmospheric flows we follow the general 

philosophy of ADMS in using the results for idealised homogeneous flows, but with 

turbulence quantities evaluated at an appropriate location.  At small travel times, 

when 𝜎∆ is dominated by inertial subrange eddies, this approach has strong theoretical 

justification.  At very large travel times, much larger than the time-scales of the 

turbulent eddies controlling the plume spread, we expect fluctuations in reality to be 

dominated by changes in the ‘mean wind direction’.  We treat this by using a different 

value of 𝜎1𝑦 in estimating 𝜎∆𝑦 than is used elsewhere.  (More specifically, for zero 

averaging time, we use a value which reflects spread due to turbulence but excludes 

spread due to mean wind direction changes.  This prevents 𝜎∆𝑦 approaching the mean 

plume width and so retains fluctuations due to meandering caused by changes in the 

mean wind direction.  As averaging time increases, the value of 𝜎1𝑦 used to estimate 

𝜎∆𝑦 increases towards the value used elsewhere to reflect the fact that the fluctuations 

due to changes in mean wind direction, like those due to turbulence, are smoothed out 

by time averaging.)  For intermediate times our approach provides a plausible 

interpolation between these two limits for which, however, the ultimate justification is 

comparison with data. 

 

 In treating area, volume and line sources we split these into sub-sources 

consisting of crosswind line and crosswind-vertical area sources as described in 

P25/01, thus treating them as multiple sources.  We follow the same splitting 

algorithm used for estimating the mean concentration. 

 

 In the following we describe in more detail the values adopted for the various 

inputs to the scheme described in §3.  As discussed in the introduction, multiple 

sources and area, volume and line sources are treated for continuous releases only, 

and, for finite duration releases, we treat only point sources with zero or infinite 

averaging (or integrating) times. 
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4.1 Unaveraged concentrations for continuous and finite duration 

releases 

Travel time 𝑡‐ 𝑠 is calculated as downwind distance/𝑈 (an approximation to the travel 

time). 

 

 𝑈, 𝜀 and 𝜎𝑣𝑒𝑙
2  are evaluated at the mean plume height 𝑧 at the point of interest 

(and not the height at which 𝜎𝑐 is required) with 𝜎𝑣𝑒𝑙
2  taken to be (𝜎𝑢

2 + 𝜎𝑣
2 + 𝜎𝑤

2 )/3.  

They are evaluated for each plume separately – in particular different 𝑈, 𝜀 and  𝜎𝑣𝑒𝑙
2  

are used at various places in multiple source calculations.  It’s mostly obvious which 

should be used – e.g. although the two source 𝜇 involves data from both plumes, 

(𝑡‐ 𝑠1)𝜀/𝜎𝑣𝑒𝑙
2  and (𝑡 − 𝑠2)𝜀/𝜎𝑣𝑒𝑙

2  are evaluated with 𝜀 and 𝜎𝑣𝑒𝑙
2  for sources 1 and 2 

respectively with (𝑡 − 𝑠1) and (𝑡 − 𝑠2) evaluated using the 𝑈 for sources 1 and 2 

respectively. 

 

Source properties 

 

For point sources we take 𝜎0𝑥 = max(𝑡R𝑈, 𝐷𝑠) (which is infinite for continuous 

sources) and 𝜎0𝑦 = 𝜎0𝑧 = 𝐷𝑠.  Here 𝐷𝑠 is the source diameter and 𝑡𝑅 is the release 

duration.  For the continuous crosswind line sources and crosswind-vertical area 

sources which form the sub-source components of area, volume and line sources 

(which we only treat for continuous releases), we take 𝜎0𝑥 to be infinite,   𝜎0𝑦 = 

source width divided by √12 and 𝜎0𝑧 = source height range divided by √12.  For 

multiple source cases (which again we only treat for continuous releases) we take the 

source separation vector √2𝐲Δ to be (0, source separation in 𝑦 direction, source 

separation in 𝑧 direction).  The effect of any along-wind separation of the sources is 

accounted for in the difference in travel times. 

 

 

𝒄𝒎  and shape factors 

 

For continuous releases we take: 

 

 
𝑐𝑚 = max𝑦,𝑧 𝑐, ℎ𝑧 =

max𝑦𝑐

max𝑦,𝑧𝑐
  and  ℎ𝑦 =

c

max𝑦c
 

(36) 

 

while for finite duration releases we take 

 

 𝑐𝑚 = max𝑦,𝑧,𝑡 𝑐,  ℎ𝑧 =
max𝑦 ∫ 𝑐𝑑𝑡

max𝑦,𝑧 ∫ 𝑐𝑑𝑡
,  ℎ𝑦 =

∫ 𝑐𝑑𝑡

max𝑦 ∫ 𝑐𝑑𝑡
 

(37) 

 

and 

 
ℎ𝑥 =

𝑐

ℎ𝑦ℎ𝑧max𝑦,𝑧,𝑡𝑐
=

𝑐

max𝑦,𝑧,𝑡𝑐

max𝑦,𝑧 ∫ 𝑐𝑑𝑡

∫ 𝑐𝑑𝑡
 

(38) 

 

Here maxima over 𝑦 are evaluated on the plume centre line and maxima over 𝑧 are 

evaluated as maxima over the values at 𝑧 = 0 and 𝑧 = 𝑧𝑝.  The time integrated 

concentration is taken equal to the concentration obtained from the ‘plume’ model 
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when run with source strength (release rate) numerically equal to the total mass 

released.  The maxima over 𝑡 are obtained as the minimum of (i) the plateau 

concentration for a long release with the same release rate and (ii) the value, for a puff 

release of duration zero and with the same total mass released, of the concentration at 

the time when the puff centre crosses the downwind distance of interest.  For any 

location where any of the ℎ factors exceed unity (this can happen because, for 

example, the maxima over 𝑧 = 0 and 𝑧 = 𝑧𝑝 are only approximations to the true 

maxima over all 𝑧) the maxima used in (36)-(38) are adjusted upwards to values 

which ensure all the ℎ factors are less than or equal to unity. 

 

𝝈𝟏 components 

 

𝜎1𝑥 is set to the value of 𝜎𝑥 from the mean concentration puff module.  This is not the 

total puff length in that it does not include the spread resulting from the source size or 

source duration 𝑡𝑅.  𝜎1𝑦
2  is taken to be the mean square plume spread from the mean 

concentration plume/puff module, excluding whatever source size addition is made in 

that module.  However the 𝜎𝑦𝑤
2  part of 𝜎1𝑦

2  is excluded when calculating 𝜎∆𝑦.  𝜎1𝑧 for 

continuous releases is defined by 𝑐𝑚 =
𝑄

2𝜋𝑈
× (𝜎𝑦 of actual plume) × (𝜎1𝑧

2 + addition 

for source size made in mean concentration module)1/2,  with a minimum of 10-3 m 

imposed. 𝑄 is the release rate here.  For finite duration releases, 𝜎1𝑧 is calculated in 

the same way but with 𝑄 equal to total mass released and 𝑐𝑚 replaced by 

max𝑦,𝑧 ∫ 𝑐𝑑𝑡. 

 

4.2 Time averaging for continuous releases 

We take 𝑥𝑎𝑣 = 𝑈𝑡𝑎𝑣. Here we evaluate 𝑈 not at the mean plume height, but at the 

larger of the height of interest and 𝑧𝑏 , where 𝑧𝑏 is an estimate of the height at which 

the advective time for the plume fluctuation length scales is equal to the time for 

diffusion to the ground (see discussion in P13/01).  𝑧𝑏 is calculated as  

     

𝑧𝑏 ∼
𝐿𝑐𝜅2

log ((𝐿𝑐𝜅2 + 𝑧0)𝑧0)
 

 

We take 𝜅, von Karman’s constant, equal to 0.4. 

 

 A further complication concerns 𝜎𝑦𝑤 and 𝜎𝑦𝑡.  We increase the 𝜎1𝑦 used to 

calculate 𝜎∆𝑦 as follows 

 

𝜎1𝑦
2 = 𝜎𝑦𝑡

2 + 𝜎𝑦𝑤
2 max(1, 𝑡𝑎𝑣/𝑡𝑠𝑎𝑚𝑝𝑙𝑒) 

 

This follows from the form of the default 𝜎𝑦𝑤
2  which is proportional to 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 and the 

idea that contributions from sampling times up to 𝑡𝑎𝑣 should appear as part of the 𝑡𝑎𝑣 

averaged plume width.  If 𝑡𝑎𝑣 and 𝑡𝑠𝑎𝑚𝑝𝑙𝑒  are both zero, we take 𝑡𝑎𝑣/𝑡𝑠𝑎𝑚𝑝𝑙𝑒 =1.  Of 

course 𝜎𝑦𝑤 should be zero for 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 =0. 

 

 

 

 



 

P13/07H/23                                                                                                      Page 18 of 35 

4.3 Time integrated concentrations for finite duration releases 

We treat this case for single point sources only.  We adopt the reciprocity relation 

described in §3 and so implementation details follow those for single continuous point 

sources. 
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5. Interaction with other modules 
 

 

The fluctuations module cannot be used with radioactivity, coastline, hills, plume 

chemistry or non-vertical jets.  However it is designed to work with plume rise 

(vertical emission), deposition (wet and dry), plume visibility and (from ADMS 6) 

buildings. 

 

 Plume rise: This affects a number of input quantities through changes to the 

mean concentration field.  In addition the plume spread due to plume rise is used to 

enhance 𝜎∆.  This follows the approach given by equation (4) of P13/05, but with 

source size not included in the enhancement as discussed in P13/06 and with changes 

necessitated by the new interpolation formula for 𝜎∆.  The final result is that we add   

𝜎𝑝𝑟
2 , the plume spread due to plume rise, to �̂�2 (see equations (32) and (33). 

 

 Deposition: This is accounted for by changes in the 𝑐 values and by the use of 

a source strength value that varies with downwind distance to account for deposition. 

 

Plume visibility:  This module may affect some variables input to the 

fluctuations module, but otherwise there is no interaction with fluctuations. 

 

 Buildings: Refer to P16/01. 

 

 The interaction with ‘plumes above the boundary layer’, which is not really a 

separate module but (in ADMS 3 onwards) an integral part of the basic dispersion 

model, also requires some comments.  Only the ‘in-boundary-layer’ plume is treated 

and the source strength value supplied to the fluctuations module is depleted to reflect 

the loss of material through the boundary layer top (compare with deposition).  The 

fact that any plume above the boundary layer is ignored should be borne in mind by 

users who make use of the fluctuation predictions away from the ground. 
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6. Summary of changes from ADMS 2 
 

As a result of the modifications to treat multiple and anisotropic sources, the 

predictions with the new scheme are not always identical to those from the old 

scheme even in situations where the old scheme is applicable.  The aspects which 

differ in situations where the old scheme was applicable are as follows: 

 

 Separate 𝑦 and 𝑧 components are now used for quantities such as 𝜎1 and 𝜎∆ which 

indicate the spatial scales for the spread of particles and for the separation of 

particle pairs) and for the ℎ, 𝑓 and 𝘨 factors (which indicate how the mean and 

mean square concentration vary spatially and how the mean square concentration 

at the location of the peak concentration is influenced by the spread in the various 

directions).  Previously no distinction was made between the 𝑦 and 𝑧 directions 

for these quantities. 

 The interpolation formula used for 𝜎∆ has been altered. 

 The treatment of source size, 𝜎𝑦𝑡 and 𝜎𝑦𝑤 (the lateral spread due to turbulence and 

due to changes in the mean flow as predicted by the mean concentration module) 

has been rationalised in evaluating the particle spreads in the 𝑦 and 𝑧 directions, 

𝜎1𝑦 and 𝜎1𝑧, for use within the fluctuations module. 

 All components of 𝜎∆ are used in calculating 𝜇 where appropriate (previously only 

the common value of the 𝑦 and 𝑧 components was used with 𝜎∆x being left unused 

for instantaneous concentrations from finite duration releases). 

 𝜇𝐴 (the value of 𝜇 corresponding to idealised infinite sources) has been introduced 

into the calculation of 𝜇.  This can have an effect in situations where the old 

scheme was applicable because, for a small range of 𝜎∆/𝜎0 values (where 𝜎0  
reflects the spatial scale of the source), the area source value 𝜇𝐴 is slightly greater 

than the line source value 𝜇𝐿. 

 For instantaneous concentrations from finite duration releases, the shape factors   

ℎ𝑥, ℎ𝑦, and ℎ𝑧 which indicate how the mean concentration falls off in the 𝑥, 𝑦  

and 𝑧 directions are now calculated differently.  The new approach avoids the use 

of max𝑡𝑐 and uses more ‘plume’ quantities instead (i.e. quantities based on 

∫ 𝑐𝑑𝑡). 

 The treatment of time averaging has been completely redesigned to provide for 

‘inertial-meander’ subrange behaviour, to give a more rational treatment of the 

𝜎𝑦𝑤 term, and to allow the possibility of negative correlations between 

concentrations from different sources becoming more negative as averaging time 

increases. 

 The clipped-normal pdf has been truncated at the 99.999th percentile (this change 

was anticipated in ADMS 2.2 for calculations of percentiles but not for 

calculations of probabilities). 

 The plume rise induced spread is accounted for in calculating 𝜎∆. 
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7. Tests and tuning of model constants 
 

 

A number of tests were conducted, both to validate the model physics and to tune the 

model constants.  The tests are limited in scope and further validation would be 

desirable; however they should give a good indication of model performance. 

Comparisons between the results presented here and those presented in P13/02 show 

reasonable agreement between the old and new schemes with only one case showing a 

significant difference (namely a somewhat different decay rate of concentration 

variance with averaging time – see figure 7 below and the equivalent figure in 

P13/02), but of course it must be remembered that the tests do not cover the entire 

range of possible scenarios. 

 

 The tests divide naturally into four categories: (i) tests of the downwind 

variation of 𝜎𝑐/𝑐; (ii) tests of the crosswind variation of 𝜎𝑐; (iii) tests of the two-

source concentration correlation predictions for crosswind separated sources ; and (iv) 

tests of the time averaging procedure.  In some of these tests there is a need to make 

assumptions about the mean concentration distribution – the fluctuations module 

requires information about the mean concentration field which is not always available 

in the experiments.  Since we do not expect very precise agreement between the 

model and experimental data, we try to keep these assumptions simple (as in P13/02), 

even though this sometimes introduces some avoidable sources of error. 

 

 Before presenting results of the tests, we describe the procedure used to tune 

the constants 𝐴0, 𝐴1....𝐴5.  All results presented below correspond to our preferred 

values for these constants.  Note that 𝐴1 affects only the multiple source results, and 

that 𝐴2 to 𝐴5 only affect results for non-zero time averaging.  The first set of tests (the 

downwind variation of 𝜎𝑐/𝑐 ) were used to tune the value of 𝐴0.  As anticipated in §3 

a value somewhat less than the value of 2.0 used in ADMS 1 and 2 was needed to 

give optimum agreement, and the value 0.2 was judged to give best results.  Note that 

the value of 𝐴0 only affects results for downwind distances 𝑥 corresponding to 

𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2   of order unity or greater, and so the degree of agreement achieved for small 

𝑥 is achieved in effect without tuning.  The second and third set of tests (the 

crosswind variation of 𝜎𝑐 and the two-source concentration correlations) were then 

carried out without any tuning.  The concentration correlations do depend on the value 

of 𝐴1, but quite reasonable agreement was achieved with our first guess value, 𝐴1 = 

1,  and so no tuning was attempted.  Note that, over the range of downwind distances 

for which we have correlation data, results are in fact insensitive to 𝐴0 so the results 

shown have in effect been achieved without any tuning at all.  The last set of tests (the 

effect of time averaging) were then carried out with the single source cases being used 

to tune the remaining constants.  In fact there was insufficient data to justify tuning  

𝐴2 (this affects only the rate of decay of 𝜎𝑐 for small values of 𝑥 and 𝑡𝑎𝑣)  and the 

value of 𝐴3 is not very important because 𝜇 decays to unity before the 𝐴3 term 

dominates 𝐿𝑐 (it could be more important if a smoother parameterisation were 

adopted for 𝜇 with 𝜇 reaching unity only asymptotically).  Hence 𝐴2 and 𝐴3 were left 

equal to our first guess values of unity.  Best results are judged to be given by 𝐴4 = 

0.01 and 𝐴5 = 0.02.  These may seem rather small for constants which are supposed 

to be of order unity, but in fact a little analysis shows that the decay of 𝜎1
2 − �̂�∆

2  

towards zero as 𝑥𝑎𝑣 increases occurs on a scale 𝐴𝜎𝑣𝑒𝑙
3 /𝜀 where 𝐴 equals 𝐴0/√𝐴4 = 2  
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for small 𝑥 and 1/√3𝐴5 = 4.1 for large 𝑥 – the values 2 and 4.1 seem more 

respectable for constants of order unity!  Note that the agreement with the 

experimental data obtained in the inertial-meander subrange of the decay (the –1/3 

slope seen in figure 6) is achieved without any tuning – the constants 𝐴4 and 𝐴5 only 

affect the behaviour outside this range. 

 

7.1 Downwind variation of 𝝈𝒄/𝒄 

Here we compare the model with experimental data obtained by Mylne and Mason 

(1991), Mylne (1992), Mylne and Davidson (1996) and Fackrell and Robins (1982).  

The data in the first three references is atmospheric surface layer data and we 

concentrate attention on the near-neutral data.  In calculating the model results we 

assume that 𝐷𝑠 = 0 and 𝑧𝑠/𝑧0 = 200 (this value is not so appropriate for the data from 

the Sirhowy valley, Wales, but for the Sirhowy valley site one doesn’t expect a 

normal surface layer and so it doesn’t  seem worthwhile to attempt a better estimate of  

𝑧0), that 𝑈, 𝜎𝑢, 𝜎𝑣, 𝜎𝑤, and 𝜀 are given by standard surface layer forms (namely 

(𝑢∗ 𝜅⁄ )log ((𝑧 + 𝑧0) 𝑧0⁄ ), 2.5𝑢∗, 2𝑢∗, 1.3𝑢∗ and (𝑢∗
3 𝜅𝑧⁄ )) and that 𝑧 evolves as a 

function of travel time 𝑡 according to Raupach’s (1983) formula.  𝜎1𝑦 is taken to be   

𝜎𝑣𝑡  (with changes in mean wind direction, 𝜎𝑦𝑤, set to zero, so that this value of 𝜎1𝑦  

is used in all parts of the calculation – see §4.1) and two different assumptions are 

made for 𝜎1𝑧.  In the first assumption 𝜎𝑧 is given by Raupach’s formula for 

(𝑧 − 𝑧)2
1/2

 while in the second assumption 𝜎𝑧 is decreased by a factor of 0.627.  The 

first assumption will be valid near the source while the second will be valid away 

from the source if 𝑐 is a reflected Gaussian with 𝑧 given by Raupach’s formula.  𝑡  

and 𝑥 are related by 𝑥 = 𝑈(𝑧(𝑡))𝑡.  These assumptions are as in P13/02 except that 

separate assumptions are made here for 𝜎1𝑦 and 𝜎1𝑧, reflecting the fact that the new 

scheme treats these quantities separately. 

 

 Figure 2 shows the downwind evolution of 𝜎𝑐/𝑐 from the model (at the point 

of maximum 𝑐) and as seen in the experiments (on the plume centreline in the 

horizontal and generally at source height, the exceptions being some measurements at 

2 m for 1 m and surface releases).  Because the model’s 𝑐 at the actual measurement 

point differs little from 𝑐𝑚 (i.e. because ℎ𝑧 ≃ 1) the model predictions at the actual 

measurement point would not be very different.  Two model curves are shown 

corresponding to the two assumptions about 𝜎1𝑧 discussed above.  As well as the 

near-neutral experimental data, the results of Mylne’s (1992) stable experiments are 

shown.  The scaling adopted in figure 2 means the comparison with the stable data is 

appropriate near the source, but will be less appropriate when the plume’s vertical 

spread is such that the height variation of 𝑈 and 𝜀 (which of course is different in 

stable conditions) is significant. 

 

 In Fackrell and Robins (1982) wind tunnel data, the release height is above the 

surface layer and so a different approach is adopted.  𝑈, 𝜎𝑢, 𝜎𝑣, 𝜎𝑤 and 𝜀 are taken 

equal to their values at the source height and 𝜎1𝑦
2  and 𝜎1𝑧

2  are calculated using 

 

 𝜎1𝑦
2 = 𝜎𝑣

2𝑡2/max(1, 2.58𝑡𝜀/𝜎𝑣𝑒𝑙
2 )  (39) 

 

and 
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 𝜎1𝑧
2 = 𝜎𝑤

2 𝑡2/max(1, 2.58𝑡𝜀/𝜎𝑣𝑒𝑙
2 ). (40) 

 

These expressions are chosen to equal 𝜎𝑣
2𝑡2 and 𝜎𝑤

2 𝑡2 for small 𝑡 and to have the 

same dependence on travel time as the reciprocal of the observed 𝑐𝑚.  Changes in 

mean wind direction are set to zero and 𝐷𝑠 is taken equal to the source diameter.  

These assumptions are as in P13/02 except that separate assumptions are made here 

for 𝜎1𝑦 and 𝜎1𝑧. 

 

The results of the comparison are shown in figure 3 for various source sizes.  The 

model results show 𝜎𝑐/𝑐 at the point of maximum 𝑐 while the quantity measured by 

Fackrell and Robins was peak 𝜎𝑐 divided by peak 𝑐 (i.e. the two quantities are not 

necessarily measured at the same point).  Although this introduces some errors into 

the comparison, the model predictions of 𝜎𝑐 vary little between the locations of the 

observed peaks in 𝜎𝑐 and in 𝑐.  In fact the model shows much less variation of 𝜎𝑐  

between these locations than is seen in the experiments, the experiments showing a 

decrease in 𝜎𝑐 as the ground is approached when the maximum in 𝑐 is at the ground.  

Such a decrease was not however observed by Mylne (1993) during atmospheric (as 

opposed to wind tunnel) studies.  At large travel times the above assumptions about , 
𝜎𝑢, 𝜎𝑣, 𝜎𝑤 and 𝜀 are not accurately valid and an attempt has been made to assess the 

error at the largest times plotted in figure 3.  Taking 𝑧 as 0.3𝐻 (in Fackrell and 

Robins’ notation) and evaluating the mean flow and turbulence properties at height 𝑧  
implies an increase in the model prediction of 𝜎𝑐/𝑐 of about 30% at the largest times 

plotted. 

 

 

7.2 Crosswind variations of 𝝈𝒄 

Here we compare with data from Mylne and Mason’s (1991) figure 9(a).  In addition 

to the data given in Mylne and Mason’s figures 8 and 9(a) we need to make 

assumptions about the flow and we adopt the same assumptions as made for the 

atmospheric experiments in §7.1 (indeed we make use of these assumptions in all the 

atmospheric experiments considered throughout §7, using either the near source or far 

downwind assumptions about 𝜎𝑧1 as appropriate).  It is not clear from Mylne and 

Mason’s paper what value 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2  takes; however from the value of 𝑥 given we 

estimate 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2  to be of order 15.  Note that model results here are insensitive to 

𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2 , for 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙

2 ≫ 1 with the model evolving self-similarly at large 𝑥. The 

comparison between model and experimental results is shown in figure 4. 

 

 

7.3 Two-source correlations 

The scheme was tested against the two-source experiments carried out in the 

atmospheric surface layer at Cardington by Davies et al. (1998).  In these experiments 

the correlation between the concentration resulting from two sources separated in the 

crosswind direction was measured.  Figure 5 shows a comparison between the model 

and experimental values of the correlation as a function of downwind distance 𝑥 and 

source separation ∆𝑦. The model results are evaluated on the centreline running 

downwind from the point midway between the two sources while the experimental 

results are at the height of the sources but at a variety of crosswind positions.  The 
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pattern of the experimental results shows little change however if we include only 

measurements obtained close to the centreline. 

 

 

7.4 Effect of time averaging 

The time averaging scheme was tested against the results from the experiments by 

Mylne and Mason (1991) and Davies et al. (1998).  Figure 6 shows the decay of 𝜎𝑐/𝑐  

with averaging time from the model (at the point of maximum 𝑐 )  and as seen in the 

experiments of Davies et al. (at source height and close to the plume centreline in the 

horizontal – see Davies et al. for the precise criteria for accepting measurements as 

being ‘close to the centreline’).  The two curves plotted correspond to 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2   

values of 0.02 and 0.2, which span the range of the measurements.  Note that an 

inertial meander subrange (-1/3 slope) can be clearly seen and that results for the two 

curves converge in this subrange and become independent of 𝑥.  This is expected 

because in this range the 𝑡𝑎𝑣‐averaged plume width becomes proportional to travel 

time, and so �̂�Δ
2/𝜎1 which characterises the fraction of plume spread due to 

meandering, becomes independent of travel time.  The graph suggests that the values 

of 𝜎𝑐 obtained in the experiments may be suffering a little from instrument frequency 

response at the smallest values of 𝑥. 

 

Figure 7 shows a comparison of the model with the data on the effect of time 

averaging given in figure 5 of Mylne and Mason (1991).  The experimental data were 

obtained at source height but at a position off the centreline in the horizontal at   

𝑦/𝜎1𝑦 ≃ 1 while the model results were obtained with ℎ𝑦 = exp(‐ 1/2) (reflecting 

the off-axis position of the observation) and ℎ𝑧 = 1.  The value of 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2  (for 

model and experiment) was about 3.3. 

 

 Finally figure 8 shows the effect of averaging time on the two-source 

concentration correlations.  This shows the magnitude of both the positive and 

negative correlations increasing with averaging time, but with the dividing line 

between the positive and negative correlations moving so that some of the negative 

correlations became positive.  This agrees qualitatively with the results found by 

Davies et al. (1998). 
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Figure 1: Illustration of Gifford’s meandering plume (or puff) model.  Figure 1 (a) 

shows the usual forward-in-time model, while figure 1(b) shows the backwards 

model.  In the backwards model, the plume or puff does not refer to a real plume or 

puff of pollutants, but simply indicates the region from which the material observed at 

the receptor is drawn.  If, at any given instant, the sources lie within the instantaneous 

backwards plume, then the material emitted at that time will contribute to the 

observed concentration at the receptor. 

Instantaneous plume/puff 

receptor 

time 

1(a) 

1(b) 
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Figure 2: Plot of 𝜎𝑐/𝑐 as a function of downwind distance 𝑥, with 𝑥 scaled by 𝜀, 𝑈  

and 𝜎𝑣𝑒𝑙
2  evaluated at source height.  The lines show the model predictions 

corresponding to the two assumptions made about 𝜎1𝑧 while the symbols show the 

results of the field experiments.  Squares and inverted triangles denote experiments 

carried out in the Fens and in South Wales respectively (Mylne and Mason 1991), 

triangles denote experiments conducted in stably stratified conditions at Cardington 

(Mylne 1992), and circles denote very short range Cardington experiments (Mylne et 

al. 1996).  The results for surface releases (for which 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2  is infinite) are plotted 

at 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2 =90. 
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2 (𝑧𝑠)/𝜀(𝑧𝑠)

 

 

 

Figure 3: Plot of 𝜎𝑐/𝑐 as a function of downwind distance 𝑥 for various source sizes, 

with 𝑥 scaled by 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙
2  evaluated at source height.  The lines show the model 

predictions while the symbols show the laboratory experiments of Fackrell and 

Robins (1982). 
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Figure 4:  Crosswind variation of the plume properties for the case given in figure 

9(a) of Mylne and Mason (1991).  The symbols are as follows: solid circles, observed 

𝑐;  open circles, observed 𝜎𝑐;  squares, observed 𝜎𝑐/𝑐;  +,  modelled 𝜎𝑐;  , modelled 

𝜎𝑐/𝑐.  All curves are normalised by their values at the point where 𝑐 is a maximum. 
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Figure 5a: Correlation between the concentrations at downwind distance x resulting 

from two sources separated in the crosswind direction by a distance ∆𝑦.    𝑥 and ∆𝑦 

are scaled with 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙
2  evaluated at source height.  Figure 5a shows the 

experimental data of Davies et al. (1998). 
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2 (𝑧𝑠)/𝜀(𝑧𝑠)

 

 

 

 

Figure 5b: Correlation between the concentrations at downwind distance x resulting 

from two sources separated in the crosswind direction by a distance ∆𝑦.  𝑥 and ∆𝑦  

are scaled with 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙
2  evaluated at source height.  Figure 5b shows the model 

results. 
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                          (𝑼𝒕𝒂𝒗𝜺/𝝈𝒗𝒆𝒍
𝟑 ) 

Figure 6: Effect of averaging time on 𝜎𝑐.  The symbols show the experimental data of Davies et al. (1998) while the lines show the model results 

for 𝑥𝜀/𝑈𝜎𝑣𝑒𝑙
2 =0.02 and 0.2 with 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙

2  evaluated at source height (these values span the range of values in the experiments).  𝑡𝑎𝑣 is scaled 

with 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙
2  evaluated at source height. 
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Figure 7: Effect of averaging time on 𝜎𝑐 for the case given in figure 5 of Mylne and 

Mason (1991).  The symbols show the experimental data while the line shows the 

model results  
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Figure 8: The effect of averaging time on the two-source concentration correlations.  

This shows the same information as in figure 5 but for a value of 𝑡𝑎𝑣𝑈𝜀/𝜎𝑣𝑒𝑙
3  of 1 

(with 𝜀, 𝑈 and 𝜎𝑣𝑒𝑙
2  evaluated at source height). 
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